van Bezouw Stein, Arias Dylan H, Ihly Rachelle, Cambré Sofie, Ferguson Andrew J, Campo Jochen, Johnson Justin C, Defillet Joeri, Wenseleers Wim, Blackburn Jeffrey L
Physics Department , University of Antwerp , Universiteitsplein 1 , B-2610 Antwerp , Belgium.
Chemistry & Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States.
ACS Nano. 2018 Jul 24;12(7):6881-6894. doi: 10.1021/acsnano.8b02213. Epub 2018 Jul 2.
The hollow cores and well-defined diameters of single-walled carbon nanotubes (SWCNTs) allow for creation of one-dimensional hybrid structures by encapsulation of various molecules. Absorption and near-infrared photoluminescence-excitation (PLE) spectroscopy reveal that the absorption spectrum of encapsulated 1,3-bis[4-(dimethylamino)phenyl]-squaraine dye molecules inside SWCNTs is modulated by the SWCNT diameter, as observed through excitation energy transfer (EET) from the encapsulated molecules to the SWCNTs, implying a strongly diameter-dependent stacking of the molecules inside the SWCNTs. Transient absorption spectroscopy, simultaneously probing the encapsulated dyes and the host SWCNTs, demonstrates this EET, which can be used as a route to diameter-dependent photosensitization, to be fast (sub-picosecond). A wide series of SWCNT samples is systematically characterized by absorption, PLE, and resonant Raman scattering (RRS), also identifying the critical diameter for squaraine filling. In addition, we find that SWCNT filling does not limit the selectivity of subsequent separation protocols (including polyfluorene polymers for isolating only semiconducting SWCNTs and aqueous two-phase separation for enrichment of specific SWCNT chiralities). The design of these functional hybrid systems, with tunable dye absorption, fast and efficient EET, and the ability to remove all metallic SWCNTs by subsequent separation, demonstrates potential for implementation in photoconversion devices.
单壁碳纳米管(SWCNTs)的中空核心和明确的直径使得通过封装各种分子来创建一维混合结构成为可能。吸收光谱和近红外光致发光激发(PLE)光谱表明,SWCNTs内部封装的1,3-双[4-(二甲基氨基)苯基]-方酸染料分子的吸收光谱受SWCNT直径的调制,这是通过从封装分子到SWCNTs的激发能量转移(EET)观察到的,这意味着SWCNTs内部分子的堆积强烈依赖于直径。瞬态吸收光谱同时探测封装的染料和主体SWCNTs,证明了这种EET很快(亚皮秒级),可作为一种实现直径依赖的光敏化途径。通过吸收光谱、PLE光谱和共振拉曼散射(RRS)对一系列广泛的SWCNT样品进行了系统表征,还确定了方酸填充的临界直径。此外,我们发现SWCNT填充并不限制后续分离方案的选择性(包括用于仅分离半导体SWCNTs的聚芴聚合物和用于富集特定SWCNT手性的水相两相分离)。这些功能混合系统的设计具有可调谐的染料吸收、快速高效的EET以及通过后续分离去除所有金属SWCNTs的能力,展示了在光转换器件中应用的潜力。