Suppr超能文献

肺动脉高压小鼠模型中保留 Frank-Starling 机制的器官水平右心室功能障碍。

Organ-level right ventricular dysfunction with preserved Frank-Starling mechanism in a mouse model of pulmonary arterial hypertension.

机构信息

Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin.

Department of Mechanical Engineering, Colorado State University , Fort Collins, Colorado.

出版信息

J Appl Physiol (1985). 2018 May 1;124(5):1244-1253. doi: 10.1152/japplphysiol.00725.2017. Epub 2018 Jan 25.

Abstract

Pulmonary arterial hypertension (PAH) is a rapidly fatal disease in which mortality is due to right ventricular (RV) failure. It is unclear whether RV dysfunction initiates at the organ level or the subcellular level or both. We hypothesized that chronic pressure overload-induced RV dysfunction begins at the organ level with preserved Frank-Starling mechanism in myocytes. To test this hypothesis, we induced PAH with Sugen + hypoxia (HySu) in mice and measured RV whole organ and subcellular functional changes by in vivo pressure-volume measurements and in vitro trabeculae length-tension measurements, respectively, at multiple time points for up to 56 days. We observed progressive changes in RV function at the organ level: in contrast to early PAH (14-day HySu), in late PAH (56-day HySu) ejection fraction and ventricular-vascular coupling were decreased. At the subcellular level, direct measurements of myofilament contraction showed that RV contractile force was similarly increased at any stage of PAH development. Moreover, cross-bridge kinetics were not changed and length dependence of force development (Frank-Starling relation) were not different from baseline in any PAH group. Histological examinations confirmed increased cardiomyocyte cross-sectional area and decreased von Willebrand factor expression in RVs with PAH. In summary, RV dysfunction developed at the organ level with preserved Frank-Starling mechanism in myofilaments, and these results provide novel insight into the development of RV dysfunction, which is critical to understanding the mechanisms of RV failure. NEW & NOTEWORTHY A multiscale investigation of pulmonary artery pressure overload in mice showed time-dependent organ-level right ventricular (RV) dysfunction with preserved Frank-Starling relations in myofilaments. Our findings provide novel insight into the development of RV dysfunction, which is critical to understanding mechanisms of RV failure.

摘要

肺动脉高压(PAH)是一种迅速致命的疾病,其死亡率归因于右心室(RV)衰竭。尚不清楚 RV 功能障碍是从器官水平还是亚细胞水平开始,或者两者兼而有之。我们假设慢性压力超负荷引起的 RV 功能障碍首先从器官水平开始,心肌细胞中的 Frank-Starling 机制保持完好。为了验证这一假设,我们在小鼠中用苏根(Sugen)加缺氧(HySu)诱导 PAH,并通过体内压力-容积测量和体外小梁长度-张力测量,分别在多达 56 天的多个时间点测量 RV 整体器官和亚细胞功能变化。我们观察到 RV 功能在器官水平上的进行性变化:与早期 PAH(14 天 HySu)相比,晚期 PAH(56 天 HySu)的射血分数和心室-血管耦联降低。在亚细胞水平上,对肌丝收缩的直接测量表明,在 PAH 发展的任何阶段,RV 收缩力均相似增加。此外,在任何 PAH 组中,横桥动力学均未改变,力发展的长度依赖性(Frank-Starling 关系)与基线无差异。组织学检查证实,PAH 的 RV 中肌细胞横截面积增加,血管性血友病因子表达减少。总之,RV 功能障碍首先从器官水平开始,肌丝中的 Frank-Starling 机制保持完好,这些结果为 RV 功能障碍的发展提供了新的见解,这对于理解 RV 衰竭的机制至关重要。

相似文献

1
Organ-level right ventricular dysfunction with preserved Frank-Starling mechanism in a mouse model of pulmonary arterial hypertension.
J Appl Physiol (1985). 2018 May 1;124(5):1244-1253. doi: 10.1152/japplphysiol.00725.2017. Epub 2018 Jan 25.
3
Direct and indirect protection of right ventricular function by estrogen in an experimental model of pulmonary arterial hypertension.
Am J Physiol Heart Circ Physiol. 2014 Aug 1;307(3):H273-83. doi: 10.1152/ajpheart.00758.2013. Epub 2014 Jun 6.
4
Beneficial effects of mesenchymal stem cell delivery via a novel cardiac bioscaffold on right ventricles of pulmonary arterial hypertensive rats.
Am J Physiol Heart Circ Physiol. 2019 May 1;316(5):H1005-H1013. doi: 10.1152/ajpheart.00091.2018. Epub 2019 Mar 1.
5
Distinct loading conditions reveal various patterns of right ventricular adaptation.
Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H354-64. doi: 10.1152/ajpheart.00180.2013. Epub 2013 May 31.
6
Early Alteration of Right Ventricle-Pulmonary Artery Coupling in Experimental Heart Failure With Preserved Ejection Fraction.
J Am Heart Assoc. 2024 Jun 4;13(11):e032201. doi: 10.1161/JAHA.123.032201. Epub 2024 May 23.
8
Pulmonary vascular mechanical consequences of ischemic heart failure and implications for right ventricular function.
Am J Physiol Heart Circ Physiol. 2019 May 1;316(5):H1167-H1177. doi: 10.1152/ajpheart.00319.2018. Epub 2019 Feb 15.
9
Why septal motion is a marker of right ventricular failure in pulmonary arterial hypertension: mechanistic analysis using a computer model.
Am J Physiol Heart Circ Physiol. 2017 Apr 1;312(4):H691-H700. doi: 10.1152/ajpheart.00596.2016. Epub 2016 Dec 30.

引用本文的文献

4
[Research progress of right ventricular strain imaging evaluation technology in pulmonary arterial hypertension].
Zhongguo Dang Dai Er Ke Za Zhi. 2024 Aug 15;26(8):887-892. doi: 10.7499/j.issn.1008-8830.2403071.
5
Sex-dependent remodeling of right ventricular function in a rat model of pulmonary arterial hypertension.
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H351-H363. doi: 10.1152/ajpheart.00098.2024. Epub 2024 Jun 7.
6
Intrinsic mechanisms of right ventricular autoregulation.
Sci Rep. 2024 Apr 23;14(1):9356. doi: 10.1038/s41598-024-59787-w.
7
Effects of voluntary running on the skeletal muscle of rats with pulmonary artery hypertension.
Front Physiol. 2023 Jul 4;14:1206484. doi: 10.3389/fphys.2023.1206484. eCollection 2023.
8
An in-silico analysis of experimental designs to study ventricular function: A focus on the right ventricle.
PLoS Comput Biol. 2022 Sep 20;18(9):e1010017. doi: 10.1371/journal.pcbi.1010017. eCollection 2022 Sep.
9
Computational models of ventricular mechanics and adaptation in response to right-ventricular pressure overload.
Front Physiol. 2022 Aug 24;13:948936. doi: 10.3389/fphys.2022.948936. eCollection 2022.
10
Sex differences in right ventricular adaptation to pressure overload in a rat model.
J Appl Physiol (1985). 2022 Mar 1;132(3):888-901. doi: 10.1152/japplphysiol.00175.2021. Epub 2022 Feb 3.

本文引用的文献

1
Right Ventricular-Pulmonary Vascular Interactions.
Physiology (Bethesda). 2017 Sep;32(5):346-356. doi: 10.1152/physiol.00040.2016.
3
Methods for Evaluating Right Ventricular Function and Ventricular-Arterial Coupling.
Prog Cardiovasc Dis. 2016 Jul-Aug;59(1):42-51. doi: 10.1016/j.pcad.2016.06.001. Epub 2016 Jul 5.
5
Downregulation of MicroRNA-126 Contributes to the Failing Right Ventricle in Pulmonary Arterial Hypertension.
Circulation. 2015 Sep 8;132(10):932-43. doi: 10.1161/CIRCULATIONAHA.115.016382. Epub 2015 Jul 10.
6
Diagnosing and treating the failing right heart.
Curr Opin Cardiol. 2015 May;30(3):292-300. doi: 10.1097/HCO.0000000000000164.
7
The right ventricle in pulmonary arterial hypertension.
Eur Respir Rev. 2014 Dec;23(134):476-87. doi: 10.1183/09059180.00007414.
8
Direct and indirect protection of right ventricular function by estrogen in an experimental model of pulmonary arterial hypertension.
Am J Physiol Heart Circ Physiol. 2014 Aug 1;307(3):H273-83. doi: 10.1152/ajpheart.00758.2013. Epub 2014 Jun 6.
9
Progressive right ventricular functional and structural changes in a mouse model of pulmonary arterial hypertension.
Physiol Rep. 2013 Dec 15;1(7):e00184. doi: 10.1002/phy2.184. eCollection 2013 Dec 1.
10
Right versus left ventricular failure: differences, similarities, and interactions.
Circulation. 2014 Mar 4;129(9):1033-44. doi: 10.1161/CIRCULATIONAHA.113.001375.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验