Kornmueller Karin, Lehofer Bernhard, Leitinger Gerd, Amenitsch Heinz, Prassl Ruth
Institute of Biophysics, Medical University of Graz, BioTechMed-Graz, Graz 8010, Austria.
Institute of Cell Biology, Histology and Embryology, Research Unit Electron Microscopic Techniques, Medical University of Graz, Graz 8010, Austria.
Nano Res. 2018 Feb;11(2):913-928. doi: 10.1007/s12274-017-1702-4. Epub 2017 Jul 25.
Lipids exhibit an extraordinary polymorphism in self-assembled mesophases, with lamellar phases as biologically most relevant representative. To mimic lipid lamellar phases with amphiphilic designer peptides, seven systematically varied short peptides were engineered. Indeed, four peptide candidates (VD, VWD, VWD, IWD) readily self-assembled into lamellae in aqueous solution: small-angle X-ray scattering patterns (SAXS) revealed ordered lamellar structures with a repeat distance of 4-5 nm. Transmission electron microscopy (TEM) images confirmed the presence of stacked sheets. Two derivatives (VD and VD) remained as loose aggregates dispersed in solution; one peptide (LWD) formed twisted tapes with internal lamellae and an antiparallel β-type monomer alignment. To understand the interaction of peptides with lipids they were mixed with phosphatidylcholines. Low peptide concentrations (1.1 mM) induced the formation of a heterogeneous mixture of vesicular structures: large multilamellar vesicles (-spacing ~6.3 nm) coexisted with oligo- or unilamellar vesicles (50 nm in diameter) and bicelle-like structures (~45 nm length, ~18 nm width). High peptide concentrations (11 mM) led to unilamellar vesicles (ULV, diameter ~260-280 nm) with a homogeneous mixing of lipids and peptides. SAXS revealed the temperature-dependent fine structure of these ULVs: at 25 °C the bilayer is in a fully interdigitated state (headgroup-to-headgroup distance ~2.9 nm), whereas at 50 °C this interdigitation opens up ( ~3.6 nm). Our results highlight the versatility of self-assembled peptide superstructures: subtle changes in the amino acid composition are key design elements in creating peptide- or lipid-peptide nanostructures with the same richness in morphology as known from the lipid-world.
脂质在自组装中间相中表现出非凡的多态性,其中层状相是生物学上最相关的代表。为了用两亲性设计肽模拟脂质层状相,设计了七种系统变化的短肽。实际上,四种肽候选物(VD、VWD、VWD、IWD)在水溶液中很容易自组装成薄片:小角X射线散射图案(SAXS)显示出重复距离约为4-5nm的有序层状结构。透射电子显微镜(TEM)图像证实了堆叠片层的存在。两种衍生物(VD和VD)仍为分散在溶液中的松散聚集体;一种肽(LWD)形成了具有内部薄片和反平行β型单体排列的扭曲带。为了理解肽与脂质的相互作用,将它们与磷脂酰胆碱混合。低肽浓度(1.1mM)诱导形成囊泡结构的异质混合物:大多层囊泡(间距约6.3nm)与寡层或单层囊泡(直径约50nm)和双分子层样结构(长度约45nm,宽度约18nm)共存。高肽浓度(11mM)导致脂质和肽均匀混合的单层囊泡(ULV,直径约260-280nm)。SAXS揭示了这些ULV的温度依赖性精细结构:在25°C时,双层处于完全交错状态(头对头距离约2.9nm),而在50°C时,这种交错打开(约3.6nm)。我们的结果突出了自组装肽超结构的多功能性:氨基酸组成的细微变化是创造具有与脂质世界相同形态丰富度的肽或脂质-肽纳米结构的关键设计元素。