Suppr超能文献

基因组选择模型在方向显性中的应用:以猪的窝产仔数为例。

Genomic selection models for directional dominance: an example for litter size in pigs.

机构信息

Departamento de Anatomía, Embriología y Genética Animal, Universidad de Zaragoza, 50013, Saragossa, Spain.

Instituto Agroalimentario de Aragón (IA2), 50013, Saragossa, Spain.

出版信息

Genet Sel Evol. 2018 Jan 26;50(1):1. doi: 10.1186/s12711-018-0374-1.

Abstract

BACKGROUND

The quantitative genetics theory argues that inbreeding depression and heterosis are founded on the existence of directional dominance. However, most procedures for genomic selection that have included dominance effects assumed prior symmetrical distributions. To address this, two alternatives can be considered: (1) assume the mean of dominance effects different from zero, and (2) use skewed distributions for the regularization of dominance effects. The aim of this study was to compare these approaches using two pig datasets and to confirm the presence of directional dominance.

RESULTS

Four alternative models were implemented in two datasets of pig litter size that consisted of 13,449 and 11,581 records from 3631 and 2612 sows genotyped with the Illumina PorcineSNP60 BeadChip. The models evaluated included (1) a model that does not consider directional dominance (Model SN), (2) a model with a covariate b for the average individual homozygosity (Model SC), (3) a model with a parameter λ that reflects asymmetry in the context of skewed Gaussian distributions (Model AN), and (4) a model that includes both b and λ (Model Full). The results of the analysis showed that posterior probabilities of a negative b or a positive λ under Models SC and AN were higher than 0.99, which indicate positive directional dominance. This was confirmed with the predictions of inbreeding depression under Models Full, SC and AN, that were higher than in the SN Model. In spite of differences in posterior estimates of variance components between models, comparison of models based on LogCPO and DIC indicated that Model SC provided the best fit for the two datasets analyzed.

CONCLUSIONS

Our results confirmed the presence of positive directional dominance for pig litter size and suggested that it should be taken into account when dominance effects are included in genomic evaluation procedures. The consequences of ignoring directional dominance may affect predictions of breeding values and can lead to biased prediction of inbreeding depression and performance of potential mates. A model that assumes Gaussian dominance effects that are centered on a non-zero mean is recommended, at least for datasets with similar features to those analyzed here.

摘要

背景

数量遗传学理论认为,近交衰退和杂种优势是基于定向优势的存在。然而,大多数包含显性效应的基因组选择程序都假设了对称分布。为了解决这个问题,可以考虑两种选择:(1)假设显性效应的均值不为零,(2)使用偏态分布来正则化显性效应。本研究的目的是使用两个猪数据集比较这些方法,并确认定向优势的存在。

结果

在由 3631 头母猪和 2612 头母猪组成的两个猪窝产仔数数据集上实现了四个替代模型,这些母猪分别用 Illumina PorcineSNP60 BeadChip 进行了基因型检测,记录数分别为 13449 个和 11581 个。评估的模型包括:(1)不考虑定向优势的模型(模型 SN);(2)包含个体平均纯合度的协变量 b 的模型(模型 SC);(3)在偏态高斯分布的背景下包含参数 λ 的模型(模型 AN);(4)包含 b 和 λ 的模型(模型 Full)。分析结果表明,在模型 SC 和 AN 下,b 为负或 λ 为正的后验概率高于 0.99,这表明存在正向定向优势。这一结果得到了模型 Full、SC 和 AN 下近交衰退预测的证实,这些预测值高于模型 SN。尽管模型间方差组分的后验估计存在差异,但基于 LogCPO 和 DIC 的模型比较表明,模型 SC 最适合分析的两个数据集。

结论

本研究结果证实了猪窝产仔数存在正向定向优势,并建议在包含显性效应的基因组评估程序中应考虑到这一点。忽略定向优势可能会影响育种值的预测,并导致对近交衰退和潜在配偶表现的预测偏差。建议至少对于与这里分析的数据集具有类似特征的数据集,使用假设显性效应集中在非零均值的高斯分布的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1719/5787328/99909fe5cc62/12711_2018_374_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验