Vargas Jurado N, Kärkkäinen H, Fischer D, Bitz O, Manninen O, Pärssinen P, Isolahti M, Strandén I, Mäntysaari E A
Natural Resources Institute Finland, Luke, 31600, Jokioinen, Finland.
Boreal Plant Breeding Ltd., 31600, Jokioinen, Finland.
Theor Appl Genet. 2025 Mar 18;138(4):77. doi: 10.1007/s00122-025-04860-9.
Accurate prediction of genomic breeding values for Timothy was possible using genomic best linear unbiased prediction. Timothy (Phleum pratense L.) is a grass species of great importance for Finnish agricultural production systems. Genotyping-by-sequencing along with genomic prediction methods offer the possibility to develop breeding materials efficiently. In addition, knowledge about the relationships among traits may be used to increase rates of genetic gain. Still, the quality of the genotypes and the validation population may affect the accuracy of predictions. The objectives of the study were (i) to estimate variance components for yield, winter damage and digestibility traits, and (ii) to assess the accuracy of genomic predictions. Variance components were estimated using genomic residual maximum likelihood where the genomic relationship matrix was scaled using a novel approach. Genomic breeding values were estimated using genomic best linear unbiased prediction in single- and multiple-trait settings, and for different marker filtering criteria. Estimates of heritability ranged from 0.13 ± 0.03 to 0.86 ± 0.05 for yield at first cut and organic matter digestibility at second cut, respectively. Genetic correlations ranged from -0.72 ± 0.12 to 0.59 ± 0.04 between yield at first cut and winter damage, and between digestibility at first and second cuts, respectively. Accuracy of prediction was not severely affected by the quality of genotyping. Using family cross-validation and single-trait models, predictive ability ranged from 0.18 to 0.62 for winter damage and digestibility at second cut, respectively. In addition, validation using forward prediction showed that estimated genomic breeding values were moderately accurate with little dispersion. Thus, genomic prediction constitutes a valuable tool for improving Timothy in Finland.
利用基因组最佳线性无偏预测能够准确预测梯牧草的基因组育种值。梯牧草(Phleum pratense L.)是芬兰农业生产系统中极为重要的一种草类。基于测序的基因分型与基因组预测方法相结合,为高效培育育种材料提供了可能。此外,有关性状间关系的知识可用于提高遗传增益率。不过,基因型的质量和验证群体可能会影响预测的准确性。本研究的目的是:(i)估计产量、冬季冻害和消化率性状的方差分量;(ii)评估基因组预测的准确性。使用基因组残差最大似然法估计方差分量,其中基因组关系矩阵采用一种新方法进行缩放。在单性状和多性状设置下,以及针对不同的标记过滤标准,使用基因组最佳线性无偏预测法估计基因组育种值。首次刈割产量和第二次刈割有机物质消化率的遗传力估计值分别为0.13±0.03至0.86±0.05。首次刈割产量与冬季冻害之间以及第一次和第二次刈割消化率之间的遗传相关性分别为-0.72±0.12至0.59±0.04。基因分型质量对预测准确性的影响并不严重。采用家系交叉验证和单性状模型,第二次刈割时冬季冻害和消化率的预测能力分别为0.18至0.62。此外,采用向前预测进行验证表明,估计的基因组育种值具有中等准确性且离散度较小。因此,基因组预测是芬兰改良梯牧草的一项有价值的工具。