Suppr超能文献

矿物结合铁对雪藻-细菌共培养物的生物可利用性及其对反照率改变的雪藻水华的影响。

Bioavailability of Mineral-Bound Iron to a Snow Algal-Bacterial Coculture and Implications for Albedo-Altering Snow Algal Blooms.

机构信息

Department of Geoscience, University of Nevada, Las Vegas, Nevada, USA

Division of Earth and Ecosystem Science, Desert Research Institute, Reno, Nevada, USA.

出版信息

Appl Environ Microbiol. 2018 Mar 19;84(7). doi: 10.1128/AEM.02322-17. Print 2018 Apr 1.

Abstract

Snow algae can form large-scale blooms across the snowpack surface and near-surface environments. These pigmented blooms can decrease snow albedo and increase local melt rates, and they may impact the global heat budget and water cycle. Yet, the underlying causes for the geospatial occurrence of these blooms remain unconstrained. One possible factor contributing to snow algal blooms is the presence of mineral dust as a micronutrient source. We investigated the bioavailability of iron (Fe)-bearing minerals, including forsterite (Fo, MgFeSiO), goethite, smectite, and pyrite as Fe sources for a -bacterial coculture through laboratory-based experimentation. Fo was capable of stimulating snow algal growth and increased the algal growth rate in otherwise Fe-depleted cocultures. Fo-bearing systems also exhibited a decrease in the ratio of bacteria to algae compared to those of Fe-depleted conditions, suggesting a shift in microbial community structure. The coculture also increased the rate of Fo dissolution relative to that of an abiotic control. Analysis of 16S rRNA genes in the coculture identified , , and , all of which are commonly found in snow and ice environments. Archaea were not detected. and , which are known to enhance mineral weathering rates, comprised two of the top eight (>1%) operational taxonomic units (OTUs). These data provide unequivocal evidence that mineral dust can support elevated snow algal growth under otherwise Fe-depleted growth conditions and that snow algal microbial communities can enhance mineral dissolution under these conditions. Fe, a key micronutrient for photosynthetic growth, is necessary to support the formation of high-density snow algal blooms. The laboratory experiments described herein allow for a systematic investigation of the interactions of snow algae, bacteria, and minerals and their ability to mobilize and uptake mineral-bound Fe. Results provide unequivocal and comprehensive evidence that mineral-bound Fe in Fe-bearing Fo was bioavailable to snow algae within an algal-bacterial coculture. This evidence includes (i) an observed increase in snow algal density and growth rate, (ii) decreased ratios of bacteria to algae in Fo-containing cultures relative to those of cultures grown under similarly Fe-depleted conditions with no mineral-bound Fe present, and (iii) increased Fo dissolution rates in the presence of algal-bacterial cocultures relative to those of abiotic mineral controls. These results have important implications for the role of mineral dust in supplying micronutrients to the snow microbiome, which may help support dense snow algal blooms capable of lowering snow albedo and increasing snow melt rates on regional, and possibly global, scales.

摘要

雪藻可以在积雪表面和近表面环境中形成大规模的水华。这些色素水华可以降低雪的反照率并增加局部融化率,从而可能影响全球热量平衡和水循环。然而,这些水华发生的地理空间原因仍然受到限制。造成雪藻水华的一个可能因素是矿物灰尘作为微量元素源的存在。我们通过实验室实验研究了含铁(Fe)矿物,包括镁铁橄榄石(Fo,MgFeSiO)、针铁矿、蒙脱石和黄铁矿作为细菌 - 细菌共培养物的 Fe 源的生物利用度。Fo 能够刺激雪藻生长,并在其他缺铁共培养物中增加藻类生长速度。与缺铁条件相比,含有 Fo 的系统还表现出细菌与藻类的比例降低,这表明微生物群落结构发生了变化。与非生物对照相比,共培养物还增加了 Fo 的溶解速率。共培养物中 16S rRNA 基因的分析确定了 、 、 和 ,这些菌均常见于雪和冰环境中。未检测到古菌。 和 ,已知它们可以提高矿物风化速率,构成了前 8 个(>1%)操作分类单元(OTUs)中的两个。这些数据提供了确凿的证据,证明矿物灰尘可以在其他缺铁生长条件下支持雪藻的高生长,并证明在这些条件下雪藻微生物群落可以增强矿物溶解。Fe 是光合作用生长的关键微量元素,是形成高密度雪藻水华所必需的。本文所述的实验室实验允许系统地研究雪藻、细菌和矿物质的相互作用及其在动员和吸收矿物质结合的 Fe 方面的能力。结果提供了确凿而全面的证据,证明含铁 Fo 中的矿物质结合的 Fe 对 雪藻在藻 - 细菌共培养物中是生物可利用的。这一证据包括:(i)观察到雪藻密度和生长速率增加;(ii)在含有 Fo 的培养物中细菌与藻类的比例相对于在没有矿物质结合的 Fe 存在且同样缺铁的条件下生长的培养物中降低;(iii)在存在藻 - 细菌共培养物的情况下 Fo 的溶解速率相对于无生命矿物质对照物增加。这些结果对矿物灰尘在为雪微生物组提供微量元素方面的作用具有重要意义,这可能有助于支持在区域乃至全球范围内降低雪反照率并增加雪融化率的密集雪藻水华的形成。

相似文献

1
Bioavailability of Mineral-Bound Iron to a Snow Algal-Bacterial Coculture and Implications for Albedo-Altering Snow Algal Blooms.
Appl Environ Microbiol. 2018 Mar 19;84(7). doi: 10.1128/AEM.02322-17. Print 2018 Apr 1.
3
Functional filtering and random processes affect the assembly of microbial communities of snow algae blooms at Maritime Antarctic.
Sci Total Environ. 2022 Jan 20;805:150305. doi: 10.1016/j.scitotenv.2021.150305. Epub 2021 Sep 11.
4
Snow viruses and their implications on red snow algal blooms.
mSystems. 2024 May 16;9(5):e0008324. doi: 10.1128/msystems.00083-24. Epub 2024 Apr 22.
5
Snowmelt duration controls red algal blooms in the snow of the European Alps.
Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2400362121. doi: 10.1073/pnas.2400362121. Epub 2024 Sep 23.
6
Microbial diversity on Icelandic glaciers and ice caps.
Front Microbiol. 2015 Apr 20;6:307. doi: 10.3389/fmicb.2015.00307. eCollection 2015.
7
The biogeography of red snow microbiomes and their role in melting arctic glaciers.
Nat Commun. 2016 Jun 22;7:11968. doi: 10.1038/ncomms11968.
8
Integrated 'Omics', Targeted Metabolite and Single-cell Analyses of Arctic Snow Algae Functionality and Adaptability.
Front Microbiol. 2015 Nov 25;6:1323. doi: 10.3389/fmicb.2015.01323. eCollection 2015.
9
Variation in Snow Algae Blooms in the Coast Range of British Columbia.
Front Microbiol. 2020 Apr 15;11:569. doi: 10.3389/fmicb.2020.00569. eCollection 2020.
10
Primary productivity of snow algae communities on stratovolcanoes of the Pacific Northwest.
Geobiology. 2017 Mar;15(2):280-295. doi: 10.1111/gbi.12219. Epub 2016 Dec 5.

引用本文的文献

1
Microbial genetic potential differs among cryospheric habitats of the Damma glacier.
Microb Genom. 2024 Oct;10(10). doi: 10.1099/mgen.0.001301.
4
Investigating the Growth of Algae Under Low Atmospheric Pressures for Potential Food and Oxygen Production on Mars.
Front Microbiol. 2021 Nov 12;12:733244. doi: 10.3389/fmicb.2021.733244. eCollection 2021.
5
Alpine Snow Algae Microbiome Diversity in the Coast Range of British Columbia.
Front Microbiol. 2020 Jul 28;11:1721. doi: 10.3389/fmicb.2020.01721. eCollection 2020.
6
Snow and Glacial Algae: A Review.
J Phycol. 2020 Apr;56(2):264-282. doi: 10.1111/jpy.12952. Epub 2020 Feb 29.
7
High turnover of faecal microbiome from algal feedstock experimental manipulations in the Pacific oyster (Crassostrea gigas).
Microb Biotechnol. 2018 Sep;11(5):848-858. doi: 10.1111/1751-7915.13277. Epub 2018 May 10.

本文引用的文献

1
Primary productivity of snow algae communities on stratovolcanoes of the Pacific Northwest.
Geobiology. 2017 Mar;15(2):280-295. doi: 10.1111/gbi.12219. Epub 2016 Dec 5.
2
Iron-Nutrient Interactions within Phytoplankton.
Front Plant Sci. 2016 Aug 18;7:1223. doi: 10.3389/fpls.2016.01223. eCollection 2016.
3
Linking microbial diversity and functionality of arctic glacial surface habitats.
Environ Microbiol. 2017 Feb;19(2):551-565. doi: 10.1111/1462-2920.13494. Epub 2016 Aug 30.
4
The biogeography of red snow microbiomes and their role in melting arctic glaciers.
Nat Commun. 2016 Jun 22;7:11968. doi: 10.1038/ncomms11968.
5
Metagenomic and satellite analyses of red snow in the Russian Arctic.
PeerJ. 2015 Dec 10;3:e1491. doi: 10.7717/peerj.1491. eCollection 2015.
6
Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria.
Nature. 2015 Jun 4;522(7554):98-101. doi: 10.1038/nature14488. Epub 2015 May 27.
7
Exploring the potential of algae/bacteria interactions.
Curr Opin Biotechnol. 2015 Jun;33:125-9. doi: 10.1016/j.copbio.2015.02.007. Epub 2015 Mar 2.
8
Diversity and potential sources of microbiota associated with snow on western portions of the Greenland Ice Sheet.
Environ Microbiol. 2015 Mar;17(3):594-609. doi: 10.1111/1462-2920.12446. Epub 2014 Apr 4.
10
Activity and bacterial diversity of snow around Russian Antarctic stations.
Res Microbiol. 2013 Nov;164(9):949-58. doi: 10.1016/j.resmic.2013.08.005. Epub 2013 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验