Suppr超能文献

相似文献

1
Spontaneous activity forms a foundation for odor-evoked activation maps in the rat olfactory bulb.
Neuroimage. 2018 May 15;172:586-596. doi: 10.1016/j.neuroimage.2018.01.051. Epub 2018 Jan 31.
2
Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: Implications for principles underlying odor mapping.
Neuroimage. 2016 Feb 1;126:208-18. doi: 10.1016/j.neuroimage.2015.11.048. Epub 2015 Nov 26.
3
Orthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI.
Neuroimage. 2020 May 15;212:116664. doi: 10.1016/j.neuroimage.2020.116664. Epub 2020 Feb 20.
4
Reproducibility of odor maps by fMRI in rodents.
Neuroimage. 2006 Jul 1;31(3):1238-46. doi: 10.1016/j.neuroimage.2005.12.060. Epub 2006 Apr 24.
6
Layer-Specific fMRI Responses to Excitatory and Inhibitory Neuronal Activities in the Olfactory Bulb.
J Neurosci. 2015 Nov 18;35(46):15263-75. doi: 10.1523/JNEUROSCI.1015-15.2015.
7
Layer-dependent BOLD and CBV-weighted fMRI responses in the rat olfactory bulb.
Neuroimage. 2014 May 1;91:237-51. doi: 10.1016/j.neuroimage.2013.12.067. Epub 2014 Jan 10.
9
Spatiotemporal dynamics of odor responses in the lateral and dorsal olfactory bulb.
PLoS Biol. 2019 Sep 18;17(9):e3000409. doi: 10.1371/journal.pbio.3000409. eCollection 2019 Sep.
10
fMRI visualization of transient activations in the rat olfactory bulb using short odor stimulations.
Neuroimage. 2007 Jul 15;36(4):1288-93. doi: 10.1016/j.neuroimage.2007.04.029. Epub 2007 Apr 25.

引用本文的文献

1
Thalamic activations in rat brain by fMRI during tactile (forepaw, whisker) and non-tactile (visual, olfactory) sensory stimulations.
PLoS One. 2022 May 6;17(5):e0267916. doi: 10.1371/journal.pone.0267916. eCollection 2022.
2
Changes in pairwise correlations during running reshape global network state in the main olfactory bulb.
J Neurophysiol. 2021 May 1;125(5):1612-1623. doi: 10.1152/jn.00464.2020. Epub 2021 Mar 3.
3
Orthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI.
Neuroimage. 2020 May 15;212:116664. doi: 10.1016/j.neuroimage.2020.116664. Epub 2020 Feb 20.
4
Spatiotemporal dynamics of odor responses in the lateral and dorsal olfactory bulb.
PLoS Biol. 2019 Sep 18;17(9):e3000409. doi: 10.1371/journal.pbio.3000409. eCollection 2019 Sep.

本文引用的文献

1
Neural and metabolic basis of dynamic resting state fMRI.
Neuroimage. 2018 Oct 15;180(Pt B):448-462. doi: 10.1016/j.neuroimage.2017.09.010. Epub 2017 Sep 9.
3
Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.
J Neurosci. 2017 Feb 15;37(7):1721-1732. doi: 10.1523/JNEUROSCI.1091-16.2016. Epub 2017 Jan 13.
4
Ongoing Slow Fluctuations in V1 Impact on Visual Perception.
Front Hum Neurosci. 2016 Aug 23;10:411. doi: 10.3389/fnhum.2016.00411. eCollection 2016.
5
Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex.
Brain Connect. 2016 Oct;6(8):596-606. doi: 10.1089/brain.2015.0414. Epub 2016 Sep 7.
8
Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?
J Cereb Blood Flow Metab. 2016 Jun;36(6):1033-45. doi: 10.1177/0271678X15622047. Epub 2015 Dec 21.
10
Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: Implications for principles underlying odor mapping.
Neuroimage. 2016 Feb 1;126:208-18. doi: 10.1016/j.neuroimage.2015.11.048. Epub 2015 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验