Bomberg Hagen, Veddeler Max, Volk Thomas, Groesdonk Heinrich V, Meiser Andreas
Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, Saarland University Medical Centre, University of Saarland, Kirrbergerstrasse 1, 66421, Homburg, Saarland, Germany.
J Clin Monit Comput. 2018 Dec;32(6):1073-1080. doi: 10.1007/s10877-018-0105-8. Epub 2018 Jan 27.
Inhalation sedation is increasingly performed in intensive care units. For this purpose, two anaesthetic reflectors, AnaConDa™ and Mirus™ are commercially available. However, their internal volume (100 ml) and possible carbon dioxide reflection raised concerns. Therefore, we compared carbon dioxide elimination of both with a heat moisture exchanger (HME, 35 ml) in a test lung model. A constant flow of carbon dioxide was insufflated into the test lung, ventilated with 500 ml, 10 breaths per minute. HME, MIRUS and AnaConDa were connected successively. Inspired (insp-CO) and end-tidal carbon dioxide concentrations (et-CO) were measured under four conditions: ambient temperature pressure (ATP), body temperature pressure saturated (BTPS), BTPS with 0.4 Vol% (ISO-0.4), and 1.2 Vol% isoflurane (ISO-1.2). Tidal volume increase to maintain normocapnia was also determined. Insp-CO was higher with AnaConDa compared to MIRUS and higher under ATP compared to BTPS. Isoflurane further decreased insp-CO and abolished the difference between AnaConDa and MIRUS. Et-CO showed similar effects. In addition to volumetric dead space, reflective dead space was determined as 198 ± 6/58 ± 6/35 ± 0/25 ± 0 ml under ATP/BTPS/ISO-0.4/ISO-1.2 conditions for AnaConDa, and 92 ± 6/25 ± 0/25 ± 0/25 ± 0 ml under the same conditions for MIRUS, respectively. Under BTPS conditions and with the use of moderate inhaled agent concentrations, reflective dead space is small and similar between the two devices.
重症监护病房中越来越多地采用吸入镇静。为此,市面上有两种麻醉反射器可供使用,即AnaConDa™和Mirus™。然而,它们的内部容积(100毫升)以及可能存在的二氧化碳反射引起了人们的关注。因此,我们在测试肺模型中比较了这两种反射器与热湿交换器(HME,35毫升)的二氧化碳清除情况。向以每分钟10次呼吸、潮气量500毫升进行通气的测试肺中持续吹入二氧化碳。HME、MIRUS和AnaConDa依次连接。在四种条件下测量吸入气二氧化碳浓度(insp-CO)和呼气末二氧化碳浓度(et-CO):环境温度压力(ATP)、体温压力饱和(BTPS)、含0.4%体积分数异氟烷的BTPS(ISO-0.4)以及含1.2%体积分数异氟烷的BTPS(ISO-1.2)。还测定了为维持正常碳酸血症而增加的潮气量。与MIRUS相比,AnaConDa的insp-CO更高,与BTPS相比,ATP条件下的insp-CO更高。异氟烷进一步降低了insp-CO,并消除了AnaConDa和MIRUS之间的差异。Et-CO也表现出类似的效果。除了容积无效腔外,在ATP/BTPS/ISO-0.4/ISO-1.2条件下,AnaConDa的反射无效腔分别为198±6/58±6/35±0/25±0毫升,MIRUS在相同条件下的反射无效腔分别为92±6/25±0/25±0/25±0毫升。在BTPS条件下且使用中等浓度的吸入麻醉剂时,两种装置的反射无效腔都很小且相似。