Panidi Julianna, Paterson Alexandra F, Khim Dongyoon, Fei Zhuping, Han Yang, Tsetseris Leonidas, Vourlias George, Patsalas Panos A, Heeney Martin, Anthopoulos Thomas D
Department of Physics and Centre for Plastic Electronics Imperial College London South Kensington London SW7 2AZ UK.
Department of Chemistry and Centre for Plastic Electronics Imperial College London South Kensington London SW7 2AZ UK.
Adv Sci (Weinh). 2017 Oct 5;5(1):1700290. doi: 10.1002/advs.201700290. eCollection 2018 Jan.
Improving the charge carrier mobility of solution-processable organic semiconductors is critical for the development of advanced organic thin-film transistors and their application in the emerging sector of printed electronics. Here, a simple method is reported for enhancing the hole mobility in a wide range of organic semiconductors, including small-molecules, polymers, and small-molecule:polymer blends, with the latter systems exhibiting the highest mobility. The method is simple and relies on admixing of the molecular Lewis acid B(CF) in the semiconductor formulation prior to solution deposition. Two prototypical semiconductors where B(CF) is shown to have a remarkable impact are the blends of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene:poly(triarylamine) (diF-TESADT:PTAA) and 2,7-dioctyl[1]-benzothieno[3,2-b][1]benzothiophene:poly(indacenodithiophene-co-benzothiadiazole) (C8-BTBT:C16-IDTBT), for which hole mobilities of 8 and 11 cm V s, respectively, are obtained. Doping of the 6,13-bis(triisopropylsilylethynyl)pentacene:PTAA blend with B(CF) is also shown to increase the maximum hole mobility to 3.7 cm V s. Analysis of the single and multicomponent materials reveals that B(CF) plays a dual role, first acting as an efficient p-dopant, and secondly as a microstructure modifier. Semiconductors that undergo simultaneous p-doping and dopant-induced long-range crystallization are found to consistently outperform transistors based on the pristine materials. Our work underscores Lewis acid doping as a generic strategy towards high performance printed organic microelectronics.
提高可溶液加工有机半导体的电荷载流子迁移率对于先进有机薄膜晶体管的发展及其在新兴印刷电子领域的应用至关重要。在此,报道了一种简单方法,可提高包括小分子、聚合物以及小分子与聚合物共混物在内的多种有机半导体中的空穴迁移率,后一种体系表现出最高的迁移率。该方法很简单,依赖于在溶液沉积之前将分子路易斯酸B(CF)混入半导体配方中。B(CF)被证明具有显著影响的两种典型半导体是2,8 - 二氟 - 5,11 - 双(三乙基甲硅烷基乙炔基)蒽并二噻吩:聚(三芳基胺)(diF - TESADT:PTAA)和2,7 - 二辛基[1] - 苯并噻吩并[3,2 - b][1]苯并噻吩:聚(茚并二噻吩 - 共 - 苯并噻二唑)(C8 - BTBT:C16 - IDTBT)的共混物,其空穴迁移率分别达到8 cm² V⁻¹ s⁻¹和11 cm² V⁻¹ s⁻¹。6,13 - 双(三异丙基甲硅烷基乙炔基)并五苯:PTAA共混物用B(CF)掺杂也显示出最大空穴迁移率提高到3.7 cm² V⁻¹ s⁻¹。对单组分和多组分材料的分析表明,B(CF)起到双重作用,首先作为有效的p型掺杂剂,其次作为微观结构改性剂。发现同时进行p型掺杂和掺杂剂诱导的长程结晶的半导体始终优于基于原始材料的晶体管。我们的工作强调路易斯酸掺杂是实现高性能印刷有机微电子的通用策略。