Suppr超能文献

金属-半导体纳米复合材料上的表面等离子体激元促进电催化水分解:界面电荷转移及实际催化位点

Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites.

作者信息

Du Lili, Shi Guodong, Zhao Yaran, Chen Xiang, Sun Hongming, Liu Fangming, Cheng Fangyi, Xie Wei

机构信息

Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) , Renewable Energy Conversion and Storage Center , College of Chemistry , Nankai University , Weijin Rd. 94 , Tianjin 300071 , China . Email:

出版信息

Chem Sci. 2019 Aug 29;10(41):9605-9612. doi: 10.1039/c9sc03360b. eCollection 2019 Nov 7.

Abstract

Plasmonic metal nanoparticles (NPs) have emerged as promising visible light harvesters to facilitate solar-to-chemical energy conversion the generation of hot electrons by non-radiative decay of plasmons. As one of the most promising renewable energy production methods for the future, electrocatalytic water splitting is an ideal chemical reaction in which plasmonic NPs can be utilized for direct solar-to-fuel conversion. Due to the rapid carrier recombination on plasmonic NPs, hybrid photocatalysts integrating metals and semiconductors are usually employed to separate the hot electrons and holes. However, an understanding of the catalytic mechanism, which is critical for rational design of plasmonic electrocatalysts, including the interfacial charge transfer pathway and real reactive sites, has been lacking. Herein, we report on the combination of plasmonic Au NPs and semiconductors (Ni and/or Co hydroxides) for plasmon-promoted electrocatalytic water splitting. By using surface-enhanced Raman spectroscopy (SERS), we find a strong spontaneous interfacial charge transfer between Au and NiCo layered double hydroxide (LDH), which facilitates both the oxygen and hydrogen evolution reactions. The real catalytic sites on the hybrid material are confirmed by selective blocking of the metal surface with a thiol molecular monolayer. It is found that the plasmon-promoted oxygen evolution occurs on the LDH semiconductor but surprisingly, the hydrogen evolution sites are mainly located on the Au NP surface. This work demonstrates the critical role of interfacial charge transfer in hot electron-driven water splitting and paves the way for rational design of high-performance plasmonic electrocatalysts.

摘要

等离子体金属纳米颗粒(NPs)已成为有前景的可见光捕获剂,以促进太阳能到化学能的转换——通过等离子体的非辐射衰减产生热电子。作为未来最有前景的可再生能源生产方法之一,电催化水分解是一种理想的化学反应,其中等离子体NPs可用于直接的太阳能到燃料的转换。由于等离子体NPs上载流子的快速复合,通常采用金属与半导体集成的混合光催化剂来分离热电子和空穴。然而,对于等离子体电催化剂的合理设计至关重要的催化机理,包括界面电荷转移途径和实际反应位点,一直缺乏了解。在此,我们报道了等离子体金NPs与半导体(镍和/或钴氢氧化物)结合用于等离子体促进的电催化水分解。通过使用表面增强拉曼光谱(SERS),我们发现金与镍钴层状双氢氧化物(LDH)之间存在强烈的自发界面电荷转移,这促进了析氧反应和析氢反应。通过用硫醇分子单层选择性地阻断金属表面,证实了混合材料上的实际催化位点。研究发现,等离子体促进的析氧反应发生在LDH半导体上,但令人惊讶的是,析氢位点主要位于金NP表面。这项工作证明了界面电荷转移在热电子驱动水分解中的关键作用,并为高性能等离子体电催化剂的合理设计铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f630/6993609/912a938c6477/c9sc03360b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验