Physikalisch-Technische Bundesanstalt , Bundesallee 100, 38116 Braunschweig, Germany.
Institut für Festkörperphysik, Leibniz Universität Hannover , Appelstraße 2, 30167 Hannover, Germany.
ACS Appl Mater Interfaces. 2018 Feb 14;10(6):6039-6045. doi: 10.1021/acsami.7b18641. Epub 2018 Feb 5.
We report on electronic transport measurements in rotational square probe configuration in combination with scanning tunneling potentiometry of epitaxial graphene monolayers which were fabricated by polymer-assisted sublimation growth on SiC substrates. The absence of bilayer graphene on the ultralow step edges of below 0.75 nm scrutinized by atomic force microscopy and scanning tunneling microscopy result in a not yet observed resistance isotropy of graphene on 4H- and 6H-SiC(0001) substrates as low as 2%. We combine microscopic electronic properties with nanoscale transport experiments and thereby disentangle the underlying microscopic scattering mechanism to explain the remaining resistance anisotropy. Eventually, this can be entirely attributed to the resistance and the number of substrate steps which induce local scattering. Thereby, our data represent the ultimate limit for resistance isotropy of epitaxial graphene on SiC for the given miscut of the substrate.
我们报告了在旋转方形探头配置中结合扫描隧道电位测量的电子输运测量结果,该配置用于研究通过聚合物辅助升华生长在 SiC 衬底上制备的外延石墨烯单层。原子力显微镜和扫描隧道显微镜对低于 0.75nm 的超低台阶边缘的双层石墨烯的检测结果表明,4H-和 6H-SiC(0001)衬底上的石墨烯的电阻各向异性低至 2%,这是尚未观察到的。我们将微观电子特性与纳米尺度输运实验相结合,从而阐明了潜在的微观散射机制,以解释剩余的电阻各向异性。最终,这可以完全归因于引起局部散射的电阻和衬底台阶的数量。因此,我们的数据代表了给定 SiC 衬底偏角的外延石墨烯电阻各向异性的极限。