Suppr超能文献

揭示外延石墨烯中用于形成晶圆级单畴石墨烯的载流子传输机制。

Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene.

作者信息

Bae Sang-Hoon, Zhou Xiaodong, Kim Seyoung, Lee Yun Seog, Cruz Samuel S, Kim Yunjo, Hannon James B, Yang Yang, Sadana Devendra K, Ross Frances M, Park Hongsik, Kim Jeehwan

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4082-4086. doi: 10.1073/pnas.1620176114. Epub 2017 Apr 3.

Abstract

Graphene epitaxy on the Si face of a SiC wafer offers monolayer graphene with unique crystal orientation at the wafer-scale. However, due to carrier scattering near vicinal steps and excess bilayer stripes, the size of electrically uniform domains is limited to the width of the terraces extending up to a few microns. Nevertheless, the origin of carrier scattering at the SiC vicinal steps has not been clarified so far. A layer-resolved graphene transfer (LRGT) technique enables exfoliation of the epitaxial graphene formed on SiC wafers and transfer to flat Si wafers, which prepares crystallographically single-crystalline monolayer graphene. Because the LRGT flattens the deformed graphene at the terrace edges and permits an access to the graphene formed at the side wall of vicinal steps, components that affect the mobility of graphene formed near the vicinal steps of SiC could be individually investigated. Here, we reveal that the graphene formed at the side walls of step edges is pristine, and scattering near the steps is mainly attributed by the deformation of graphene at step edges of vicinalized SiC while partially from stripes of bilayer graphene. This study suggests that the two-step LRGT can prepare electrically single-domain graphene at the wafer-scale by removing the major possible sources of electrical degradation.

摘要

在碳化硅(SiC)晶圆的硅面上进行石墨烯外延生长可在晶圆尺度上提供具有独特晶体取向的单层石墨烯。然而,由于近邻台阶附近的载流子散射以及多余的双层条纹,电均匀畴的尺寸被限制在延伸至几微米的台面宽度范围内。尽管如此,到目前为止,SiC近邻台阶处载流子散射的起源尚未得到阐明。一种层分辨石墨烯转移(LRGT)技术能够将在SiC晶圆上形成的外延石墨烯剥离并转移到平坦的硅晶圆上,从而制备出晶体学上的单晶单层石墨烯。由于LRGT使台面边缘处变形的石墨烯变平,并允许接触在近邻台阶侧壁处形成的石墨烯,因此可以单独研究影响在SiC近邻台阶附近形成的石墨烯迁移率的成分。在此,我们揭示在台阶边缘侧壁处形成的石墨烯是纯净的,台阶附近的散射主要归因于近邻化SiC台阶边缘处石墨烯的变形,同时部分归因于双层石墨烯条纹。这项研究表明,两步LRGT可以通过去除主要的电降解可能来源,在晶圆尺度上制备电单畴石墨烯。

相似文献

2
The physics of epitaxial graphene on SiC(0001).碳化硅(0001)上外延石墨烯的物理性质。
J Phys Condens Matter. 2012 Aug 8;24(31):314215. doi: 10.1088/0953-8984/24/31/314215. Epub 2012 Jul 20.
3
Electrical Homogeneity Mapping of Epitaxial Graphene on Silicon Carbide.碳化硅上外延石墨烯的电均匀性测绘。
ACS Appl Mater Interfaces. 2018 Sep 19;10(37):31641-31647. doi: 10.1021/acsami.8b11428. Epub 2018 Sep 4.
4
Minimum Resistance Anisotropy of Epitaxial Graphene on SiC.碳化硅外延石墨烯的最小各向异性阻力。
ACS Appl Mater Interfaces. 2018 Feb 14;10(6):6039-6045. doi: 10.1021/acsami.7b18641. Epub 2018 Feb 5.
6
Substrate Screening for the Epitaxial Growth of a Single-Crystal Graphene Wafer.用于单晶石墨烯晶圆外延生长的衬底筛选
J Phys Chem Lett. 2024 Jan 25;15(3):758-765. doi: 10.1021/acs.jpclett.3c03355. Epub 2024 Jan 16.

本文引用的文献

3
Layer-resolved graphene transfer via engineered strain layers.通过工程应变层实现层分辨石墨烯转移。
Science. 2013 Nov 15;342(6160):833-6. doi: 10.1126/science.1242988. Epub 2013 Oct 31.
5
The physics of epitaxial graphene on SiC(0001).碳化硅(0001)上外延石墨烯的物理性质。
J Phys Condens Matter. 2012 Aug 8;24(31):314215. doi: 10.1088/0953-8984/24/31/314215. Epub 2012 Jul 20.
6
Deformation and scattering in graphene over substrate steps.在基底台阶上的石墨烯的变形和散射。
Phys Rev Lett. 2012 Mar 2;108(9):096601. doi: 10.1103/PhysRevLett.108.096601. Epub 2012 Mar 1.
7
Atomic-scale transport in epitaxial graphene.外延石墨烯中的原子尺度输运。
Nat Mater. 2011 Nov 20;11(2):114-9. doi: 10.1038/nmat3170.
8
Toward clean and crackless transfer of graphene.实现石墨烯的清洁和无裂纹转移。
ACS Nano. 2011 Nov 22;5(11):9144-53. doi: 10.1021/nn203377t. Epub 2011 Oct 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验