Suppr超能文献

用于生物传感器和闭环药物输送的生物微机电系统。

BioMEMS for biosensors and closed-loop drug delivery.

机构信息

Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA.

Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Int J Pharm. 2018 Jun 15;544(2):335-349. doi: 10.1016/j.ijpharm.2018.01.030. Epub 2018 Jan 31.

Abstract

The efficacy of pharmaceutical treatments can be greatly enhanced by physiological feedback from the patient using biosensors, though this is often invasive or infeasible. By adapting microelectromechanical systems (MEMS) technology to miniaturize such biosensors, previously inaccessible signals can be obtained, often from inside the patient. This is enabled by the device's extremely small footprint which minimizes both power consumption and implantation trauma, as well as the transport time for chemical analytes, in turn decreasing the sensor's response time. MEMS fabrication also allows mass production which can be easily scaled without sacrificing its high reproducibility and reliability, and allows seamless integration with control circuitry and telemetry which is already produced using the same materials and fabrication steps. By integrating these systems with drug delivery devices, many of which are also MEMS-based, closed loop drug delivery can be achieved. This paper surveys the types of signal transduction devices available for biosensing-primarily electrochemical, optical, and mechanical-looking at their implementation via MEMS technology. The impact of MEMS technology on the challenges of biosensor development, particularly safety, power consumption, degradation, fouling, and foreign body response, are also discussed.

摘要

通过使用生物传感器从患者那里获得生理反馈,药物治疗的效果可以大大增强,尽管这通常是侵入性的或不可行的。通过将微机电系统(MEMS)技术应用于生物传感器的小型化,可以获得以前无法获得的信号,这些信号通常来自患者体内。这是通过设备的极小尺寸实现的,该尺寸最小化了功耗和植入创伤,以及化学分析物的传输时间,从而缩短了传感器的响应时间。MEMS 制造还允许大规模生产,而无需牺牲其高重复性和可靠性,并且可以与已经使用相同材料和制造步骤生产的控制电路和遥测技术无缝集成。通过将这些系统与许多基于 MEMS 的药物输送装置集成,可实现闭环药物输送。本文调查了可用于生物传感的信号转导装置的类型-主要是电化学、光学和机械装置-并研究了它们通过 MEMS 技术的实现方式。还讨论了 MEMS 技术对生物传感器开发面临的挑战(特别是安全性、功耗、降解、污垢和异物反应)的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验