Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030-3101.
Center for Molecular Oncology, UConn Health, Farmington, CT 06030-3101.
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1523-1528. doi: 10.1073/pnas.1720355115. Epub 2018 Jan 29.
The mismatch repair pathway (MMR) is essential for removing DNA polymerase errors, thereby maintaining genomic stability. Loss of MMR function increases mutation frequency and is associated with tumorigenesis. However, how MMR is executed at active DNA replication forks is unclear. This has important implications for understanding how MMR repairs -methylguanine/thymidine (G/T) mismatches created upon exposure to DNA alkylating agents. If G/T lesion recognition by MMR initiates mismatch excision, the reinsertion of a mismatched thymidine during resynthesis could initiate futile repair cycles. One consequence of futile repair cycles might be a disruption of overall DNA replication in the affected cell. Herein, we show that in MMR-proficient HeLa cancer cells, treatment with a DNA alkylating agent slows S phase progression, yet cells still progress into the next cell cycle. In the first S phase following treatment, they activate ataxia telangiectasia and Rad3-related (ATR)-Checkpoint Kinase 1 (Chk1) signaling, which limits DNA damage, while inhibition of ATR kinase activity accelerates DNA damage accumulation and sensitivity to the DNA alkylating agent. We also observed that exposure of human embryonic stem cells to alkylation damage severely compromised DNA replication in a MMR-dependent manner. These cells fail to activate the ATR-Chk1 signaling axis, which may limit their ability to handle replication stress. Accordingly, they accumulate double-strand breaks and undergo immediate apoptosis. Our findings implicate the MMR-directed response to alkylation damage as a replication stress inducer, suggesting that repeated MMR processing of mismatches may occur that can disrupt S phase progression.
错配修复途径(MMR)对于清除 DNA 聚合酶错误至关重要,从而维持基因组稳定性。MMR 功能的丧失会增加突变频率,并与肿瘤发生相关。然而,MMR 如何在活跃的 DNA 复制叉上执行尚不清楚。这对于理解 MMR 如何修复 - 暴露于 DNA 烷化剂后形成的 G/T 错配具有重要意义。如果 MMR 通过 G/T 损伤识别启动错配切除,那么在重新合成过程中插入一个错配的胸苷可能会引发无效的修复循环。无效修复循环的一个后果可能是受影响细胞中整体 DNA 复制的中断。在此,我们表明在 MMR 功能正常的 HeLa 癌细胞中,用 DNA 烷化剂处理会减缓 S 期进程,但细胞仍会进入下一个细胞周期。在处理后的第一个 S 期,它们激活共济失调毛细血管扩张症和 Rad3 相关(ATR)-检查点激酶 1(Chk1)信号,从而限制 DNA 损伤,而抑制 ATR 激酶活性会加速 DNA 损伤积累并增加对 DNA 烷化剂的敏感性。我们还观察到,人胚胎干细胞暴露于烷化损伤会严重损害以 MMR 依赖性方式的 DNA 复制。这些细胞无法激活 ATR-Chk1 信号通路,这可能限制了它们处理复制应激的能力。因此,它们会积累双链断裂并立即发生细胞凋亡。我们的发现表明,MMR 指导的对烷化损伤的反应是一种复制应激诱导剂,表明可能会发生重复的 MMR 处理错配,从而破坏 S 期进程。