Suppr超能文献

小麦天冬酰胺合成酶的基因组、生化及模型分析

Genomic, Biochemical, and Modeling Analyses of Asparagine Synthetases from Wheat.

作者信息

Xu Hongwei, Curtis Tanya Y, Powers Stephen J, Raffan Sarah, Gao Runhong, Huang Jianhua, Heiner Monika, Gilbert David R, Halford Nigel G

机构信息

Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.

Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom.

出版信息

Front Plant Sci. 2018 Jan 15;8:2237. doi: 10.3389/fpls.2017.02237. eCollection 2017.

Abstract

Asparagine synthetase activity in cereals has become an important issue with the discovery that free asparagine concentration determines the potential for formation of acrylamide, a probably carcinogenic processing contaminant, in baked cereal products. Asparagine synthetase catalyses the ATP-dependent transfer of the amino group of glutamine to a molecule of aspartate to generate glutamate and asparagine. Here, asparagine synthetase-encoding polymerase chain reaction (PCR) products were amplified from wheat () cv. Spark cDNA. The encoded proteins were assigned the names TaASN1, TaASN2, and TaASN3 on the basis of comparisons with other wheat and cereal asparagine synthetases. Although very similar to each other they differed slightly in size, with molecular masses of 65.49, 65.06, and 66.24 kDa, respectively. Chromosomal positions and scaffold references were established for , and , and a fourth, more recently identified gene, . , and were all found to be single copy genes, located on chromosomes 5, 3, and 4, respectively, of each genome (A, B, and D), although variety Chinese Spring lacked a gene in the B genome. Two copies of were found on chromosome 1 of each genome, and these were given the names and . The TaASN1, TaASN2, and TaASN3 PCR products were heterologously expressed in ( was not investigated in this part of the study). Western blot analysis identified two monoclonal antibodies that recognized the three proteins, but did not distinguish between them, despite being raised to epitopes SKKPRMIEVAAP and GGSNKPGVMNTV in the variable C-terminal regions of the proteins. The heterologously expressed TaASN1 and TaASN2 proteins were found to be active asparagine synthetases, producing asparagine and glutamate from glutamine and aspartate. The asparagine synthetase reaction was modeled using SNOOPY software and information from the BRENDA database to generate differential equations to describe the reaction stages, based on mass action kinetics. Experimental data from the reactions catalyzed by TaASN1 and TaASN2 were entered into the model using Copasi, enabling values to be determined for kinetic parameters. Both the reaction data and the modeling showed that the enzymes continued to produce glutamate even when the synthesis of asparagine had ceased due to a lack of aspartate.

摘要

随着发现游离天冬酰胺浓度决定烘焙谷物产品中丙烯酰胺(一种可能致癌的加工污染物)形成的可能性,谷物中天冬酰胺合成酶活性已成为一个重要问题。天冬酰胺合成酶催化谷氨酰胺的氨基以ATP依赖的方式转移到天冬氨酸分子上,生成谷氨酸和天冬酰胺。在此,从小麦()品种Spark的cDNA中扩增出编码天冬酰胺合成酶的聚合酶链反应(PCR)产物。根据与其他小麦和谷物天冬酰胺合成酶的比较,将编码的蛋白质分别命名为TaASN1、TaASN2和TaASN3。尽管它们彼此非常相似,但大小略有不同,分子量分别为65.49、65.06和66.24 kDa。确定了、和以及第四个最近鉴定的基因的染色体位置和支架参考。、和均被发现为单拷贝基因,分别位于每个基因组(A、B和D)的5号、3号和4号染色体上,尽管中国春品种在B基因组中缺少一个基因。在每个基因组的1号染色体上发现了两个拷贝,并将它们命名为和。TaASN1、TaASN2和TaASN3的PCR产物在(本研究的这一部分未对进行研究)中进行了异源表达。蛋白质印迹分析鉴定出两种单克隆抗体,它们能识别这三种蛋白质,但无法区分它们,尽管这两种抗体是针对蛋白质可变C末端区域的表位SKKPRMIEVAAP和GGSNKPGVMNTV制备的。发现异源表达的TaASN1和TaASN2蛋白是有活性的天冬酰胺合成酶,能从谷氨酰胺和天冬氨酸生成天冬酰胺和谷氨酸。使用SNOOPY软件和来自BRENDA数据库的信息对天冬酰胺合成酶反应进行建模,以基于质量作用动力学生成描述反应阶段的微分方程。使用Copasi将TaASN1和TaASN2催化反应的实验数据输入模型,从而能够确定动力学参数的值。反应数据和建模均表明,即使由于天冬氨酸缺乏导致天冬酰胺合成停止,这些酶仍会继续产生谷氨酸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7015/5775275/bfabdbf48f5a/fpls-08-02237-g001.jpg

相似文献

1
Genomic, Biochemical, and Modeling Analyses of Asparagine Synthetases from Wheat.
Front Plant Sci. 2018 Jan 15;8:2237. doi: 10.3389/fpls.2017.02237. eCollection 2017.
2
Food safety: Structure and expression of the asparagine synthetase gene family of wheat.
J Cereal Sci. 2016 Mar;68:122-131. doi: 10.1016/j.jcs.2016.01.010.
4
Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA.
J Plant Physiol. 2005 Jan;162(1):81-9. doi: 10.1016/j.jplph.2004.07.006.
6
Cereal asparagine synthetase genes.
Ann Appl Biol. 2021 Jan;178(1):6-22. doi: 10.1111/aab.12632. Epub 2020 Sep 4.
8
The Sulphur Response in Wheat Grain and Its Implications for Acrylamide Formation and Food Safety.
Int J Mol Sci. 2020 May 29;21(11):3876. doi: 10.3390/ijms21113876.
10
Revisiting the steady state kinetic mechanism of glutamine-dependent asparagine synthetase from Escherichia coli.
Arch Biochem Biophys. 2003 May 1;413(1):23-31. doi: 10.1016/s0003-9861(03)00118-8.

引用本文的文献

1
Advances in genome editing in plants within an evolving regulatory landscape, with a focus on its application in wheat breeding.
J Plant Biochem Biotechnol. 2025;34(3):599-614. doi: 10.1007/s13562-025-00981-w. Epub 2025 Apr 15.
2
Markers Associated with Starch, Protein and Asparagine Content in Grain of Common Wheat.
Genes (Basel). 2025 May 29;16(6):661. doi: 10.3390/genes16060661.
5
Effects of Exogenous L-Asparagine on Poplar Biomass Partitioning and Root Morphology.
Int J Mol Sci. 2022 Oct 28;23(21):13126. doi: 10.3390/ijms232113126.
6
Wheat Quality Formation and Its Regulatory Mechanism.
Front Plant Sci. 2022 Mar 30;13:834654. doi: 10.3389/fpls.2022.834654. eCollection 2022.
10
Cereal asparagine synthetase genes.
Ann Appl Biol. 2021 Jan;178(1):6-22. doi: 10.1111/aab.12632. Epub 2020 Sep 4.

本文引用的文献

2
Effects of Fungicide Treatment on Free Amino Acid Concentration and Acrylamide-Forming Potential in Wheat.
J Agric Food Chem. 2016 Dec 28;64(51):9689-9696. doi: 10.1021/acs.jafc.6b04520. Epub 2016 Dec 15.
4
Food safety: Structure and expression of the asparagine synthetase gene family of wheat.
J Cereal Sci. 2016 Mar;68:122-131. doi: 10.1016/j.jcs.2016.01.010.
6
Reducing the potential for processing contaminant formation in cereal products.
J Cereal Sci. 2014 May;59(3):382-392. doi: 10.1016/j.jcs.2013.11.002.
7
Effects of variety and nutrient availability on the acrylamide-forming potential of rye grain.
J Cereal Sci. 2013 May;57(3):463-470. doi: 10.1016/j.jcs.2013.02.001.
8
CerealsDB 2.0: an integrated resource for plant breeders and scientists.
BMC Bioinformatics. 2012 Sep 3;13:219. doi: 10.1186/1471-2105-13-219.
9
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.
Bioinformatics. 2012 Jun 15;28(12):1647-9. doi: 10.1093/bioinformatics/bts199. Epub 2012 Apr 27.
10
The acrylamide problem: a plant and agronomic science issue.
J Exp Bot. 2012 May;63(8):2841-51. doi: 10.1093/jxb/ers011. Epub 2012 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验