Davydova Marina, Laposa Alexandr, Smarhak Jiri, Kromka Alexander, Neykova Neda, Nahlik Josef, Kroutil Jiri, Drahokoupil Jan, Voves Jan
Institute of Physics v.v.i., Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Prague, Czech Republic.
Department of Microelectronics, Faculty of Electrical Engineering, CTU in Prague, Technicka 2, 16627 Prague, Czech Republic.
Beilstein J Nanotechnol. 2018 Jan 3;9:22-29. doi: 10.3762/bjnano.9.4. eCollection 2018.
Microstructured single- and double-layered sensor devices based on p-type hydrogen-terminated nanocrystalline diamond (NCD) films and/or n-type ZnO nanorods (NRs) have been obtained via a facile microwave-plasma-enhanced chemical vapour deposition process or a hydrothermal growth procedure. The morphology and crystal structure of the synthesized materials was analysed with scanning electron microscopy, X-ray diffraction measurements and Raman spectroscopy. The gas sensing properties of the sensors based on i) NCD films, ii) ZnO nanorods, and iii) hybrid ZnO NRs/NCD structures were evaluated with respect to oxidizing (i.e., NO, CO) and reducing (i.e., NH) gases at 150 °C. The hybrid ZnO NRs/NCD sensor showed a remarkably enhanced NO response compared to the ZnO NRs sensor. Further, inspired by this special hybrid structure, the simulation of interaction between the gas molecules (NO and CO) and hybrid ZnO NRs/NCD sensor was studied using DFT calculations.
基于p型氢终端纳米晶金刚石(NCD)薄膜和/或n型氧化锌纳米棒(NRs)的微结构单层和双层传感器装置,已通过简便的微波等离子体增强化学气相沉积工艺或水热生长程序制备而成。利用扫描电子显微镜、X射线衍射测量和拉曼光谱对合成材料的形态和晶体结构进行了分析。针对氧化气体(即NO、CO)和还原气体(即NH),在150°C下评估了基于以下三种情况的传感器的气敏特性:i)NCD薄膜;ii)氧化锌纳米棒;iii)氧化锌纳米棒/纳米晶金刚石混合结构。与氧化锌纳米棒传感器相比,氧化锌纳米棒/纳米晶金刚石混合传感器对NO的响应显著增强。此外,受这种特殊混合结构的启发,使用密度泛函理论计算研究了气体分子(NO和CO)与氧化锌纳米棒/纳米晶金刚石混合传感器之间相互作用的模拟。