Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey.
Proteins. 2018 May;86(5):515-523. doi: 10.1002/prot.25469. Epub 2018 Feb 5.
The zeta potential (ζ) is the effective charge energy of a solvated protein, describing the magnitude of electrostatic interactions in solution. It is commonly used in the assessment of adsorption processes and dispersion stability. Predicting ζ from molecular structure would be useful to the structure-based molecular design of drugs, proteins, and other molecules that hold charge-dependent function while remaining suspended in solution. One challenge in predicting ζ is identifying the location of the slip plane (X ), a distance from the protein surface where ζ is theoretically defined. This study tests the hypothesis that the X can be estimated by the Stokes-Einstein hydrodynamic radius (R ), using globular hen egg white lysozyme as a model system. Although the X and R differ in their theoretical definitions, with the X being the position of the ζ during electrokinetic phenomena (e.g., electrophoresis) and the R being a radius pertaining to the edge of solvation during diffusion, they both represent the point where water and ions no longer adhere to a molecule. This work identifies the limited range of ionic strengths in which the X can be determined using diffusivity measurements and the Stokes-Einstein equation. In addition, a computational protocol is developed for determining the ζ from a protein crystal structure. At low ionic strengths, a hyperdiffusivity regime exists, requiring direct measurement of electrophoretic mobility to determine ζ. This work, therefore, supports a basic tenant of EDL theory that the electric double layer during diffusion and electrophoresis are equivalent in the Stokes-Einstein regime.
zeta 电位(ζ)是溶剂化蛋白质的有效电荷能量,描述了溶液中静电相互作用的大小。它常用于吸附过程和分散稳定性的评估。从分子结构预测 ζ 将有助于基于结构的药物、蛋白质和其他分子的分子设计,这些分子在溶液中悬浮时保持电荷依赖性功能。预测 ζ 的一个挑战是确定滑移面(X)的位置,X 是从蛋白质表面到 ζ 理论定义的距离。本研究测试了以下假设,即 X 可以通过 Stokes-Einstein 流体动力学半径(R)来估计,使用球状鸡卵清溶菌酶作为模型系统。虽然 X 和 R 在理论定义上有所不同,其中 X 是电动现象(如电泳)期间 ζ 的位置,而 R 是扩散期间溶剂化边缘的半径,但它们都代表水分子和离子不再附着于分子的位置。这项工作确定了可以使用扩散测量和 Stokes-Einstein 方程确定 X 的离子强度的有限范围。此外,还开发了一种从蛋白质晶体结构确定 ζ 的计算方案。在低离子强度下,存在超扩散率状态,需要直接测量电泳迁移率来确定 ζ。因此,这项工作支持 EDL 理论的一个基本原理,即在扩散和电泳过程中的电动双层在 Stokes-Einstein 状态下是等效的。