Suppr超能文献

溶菌酶电动行为中的水力半径与滑移面位置一致。

Hydrodynamic radius coincides with the slip plane position in the electrokinetic behavior of lysozyme.

机构信息

Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey.

出版信息

Proteins. 2018 May;86(5):515-523. doi: 10.1002/prot.25469. Epub 2018 Feb 5.

Abstract

The zeta potential (ζ) is the effective charge energy of a solvated protein, describing the magnitude of electrostatic interactions in solution. It is commonly used in the assessment of adsorption processes and dispersion stability. Predicting ζ from molecular structure would be useful to the structure-based molecular design of drugs, proteins, and other molecules that hold charge-dependent function while remaining suspended in solution. One challenge in predicting ζ is identifying the location of the slip plane (X ), a distance from the protein surface where ζ is theoretically defined. This study tests the hypothesis that the X can be estimated by the Stokes-Einstein hydrodynamic radius (R ), using globular hen egg white lysozyme as a model system. Although the X and R differ in their theoretical definitions, with the X being the position of the ζ during electrokinetic phenomena (e.g., electrophoresis) and the R being a radius pertaining to the edge of solvation during diffusion, they both represent the point where water and ions no longer adhere to a molecule. This work identifies the limited range of ionic strengths in which the X can be determined using diffusivity measurements and the Stokes-Einstein equation. In addition, a computational protocol is developed for determining the ζ from a protein crystal structure. At low ionic strengths, a hyperdiffusivity regime exists, requiring direct measurement of electrophoretic mobility to determine ζ. This work, therefore, supports a basic tenant of EDL theory that the electric double layer during diffusion and electrophoresis are equivalent in the Stokes-Einstein regime.

摘要

zeta 电位(ζ)是溶剂化蛋白质的有效电荷能量,描述了溶液中静电相互作用的大小。它常用于吸附过程和分散稳定性的评估。从分子结构预测 ζ 将有助于基于结构的药物、蛋白质和其他分子的分子设计,这些分子在溶液中悬浮时保持电荷依赖性功能。预测 ζ 的一个挑战是确定滑移面(X)的位置,X 是从蛋白质表面到 ζ 理论定义的距离。本研究测试了以下假设,即 X 可以通过 Stokes-Einstein 流体动力学半径(R)来估计,使用球状鸡卵清溶菌酶作为模型系统。虽然 X 和 R 在理论定义上有所不同,其中 X 是电动现象(如电泳)期间 ζ 的位置,而 R 是扩散期间溶剂化边缘的半径,但它们都代表水分子和离子不再附着于分子的位置。这项工作确定了可以使用扩散测量和 Stokes-Einstein 方程确定 X 的离子强度的有限范围。此外,还开发了一种从蛋白质晶体结构确定 ζ 的计算方案。在低离子强度下,存在超扩散率状态,需要直接测量电泳迁移率来确定 ζ。因此,这项工作支持 EDL 理论的一个基本原理,即在扩散和电泳过程中的电动双层在 Stokes-Einstein 状态下是等效的。

相似文献

5
Electrophoresis of particles with Navier velocity slip.带有纳维速度滑移的粒子电泳。
Electrophoresis. 2013 Mar;34(5):651-61. doi: 10.1002/elps.201200484. Epub 2013 Feb 6.
10
Monolayers of poly-L-lysine on mica--Electrokinetic characteristics.云母上的聚-L-赖氨酸单层——动电特性。
J Colloid Interface Sci. 2015 Oct 15;456:116-24. doi: 10.1016/j.jcis.2015.05.044. Epub 2015 Jun 9.

本文引用的文献

3
Ordinary-extraordinary transition in dynamics of solutions of charged macromolecules.带电大分子溶液动力学中的普通-非凡转变。
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12627-12632. doi: 10.1073/pnas.1612249113. Epub 2016 Oct 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验