Suppr超能文献

离子液体诱导溶菌酶脱水及结构域闭合:荧光相关光谱法与分子动力学模拟

Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation.

作者信息

Ghosh Shirsendu, Parui Sridip, Jana Biman, Bhattacharyya Kankan

机构信息

Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India.

出版信息

J Chem Phys. 2015 Sep 28;143(12):125103. doi: 10.1063/1.4931974.

Abstract

Effect of a room temperature ionic liquid (RTIL, [pmim][Br]) on the structure and dynamics of the protein, lysozyme, is investigated by fluorescence correlation spectroscopy (FCS) and molecular dynamic (MD) simulation. The FCS data indicate that addition of the RTIL ([pmim][Br]) leads to reduction in size and faster conformational dynamics of the protein. The hydrodynamic radius (rH) of lysozyme decreases from 18 Å in 0 M [pmim][Br] to 11 Å in 1.5 M [pmim][Br] while the conformational relaxation time decreases from 65 μs to 5 μs. Molecular origin of the collapse (size reduction) of lysozyme in aqueous RTIL is analyzed by MD simulation. The radial distribution function of water, RTIL cation, and RTIL anion from protein clearly indicates that addition of RTIL causes replacement of interfacial water by RTIL cation (pmim) from the first solvation layer of the protein providing a comparatively dehydrated environment. This preferential solvation of the protein by the RTIL cation extends up to ∼30 Å from the protein surface giving rise to a nanoscopic cage of overall radius 42 Å. In the nanoscopic cage of the RTIL (42 Å), volume fraction of the protein (radius 12 Å) is only about 2%. RTIL anion does not show any preferential solvation near protein surface. Comparison of effective radius obtained from simulation and from FCS data suggests that the "dry" protein (radius 12 Å) alone diffuses in a nanoscopic cage of RTIL (radius 42 Å). MD simulation further reveals a decrease in distance ("domain closure") between the two domains (alpha and beta) of the protein leading to a more compact structure compared to that in the native state.

摘要

通过荧光相关光谱法(FCS)和分子动力学(MD)模拟研究了室温离子液体(RTIL,[pmim][Br])对蛋白质溶菌酶的结构和动力学的影响。FCS数据表明,添加RTIL([pmim][Br])会导致蛋白质尺寸减小和构象动力学加快。溶菌酶的流体动力学半径(rH)从0 M [pmim][Br]时的18 Å降至1.5 M [pmim][Br]时的11 Å,而构象弛豫时间从65 μs降至5 μs。通过MD模拟分析了溶菌酶在水性RTIL中塌陷(尺寸减小)的分子起源。蛋白质周围水、RTIL阳离子和RTIL阴离子的径向分布函数清楚地表明,添加RTIL会导致蛋白质第一溶剂化层中的界面水被RTIL阳离子(pmim)取代,从而提供了一个相对脱水的环境。RTIL阳离子对蛋白质的这种优先溶剂化作用从蛋白质表面延伸至约30 Å,形成了一个总半径为42 Å的纳米笼。在RTIL的纳米笼(42 Å)中,蛋白质(半径12 Å)的体积分数仅约为2%。RTIL阴离子在蛋白质表面附近未表现出任何优先溶剂化作用。模拟得到的有效半径与FCS数据的比较表明,单独的“干燥”蛋白质(半径12 Å)在RTIL的纳米笼(半径42 Å)中扩散。MD模拟进一步揭示,与天然状态相比,蛋白质的两个结构域(α和β)之间的距离减小(“结构域闭合”),导致结构更加紧凑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验