Suppr超能文献

闪式纳米复合技术制备核壳型纳米粒用于增强胰岛素黏膜传递的规模化生产

Scalable production of core-shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin.

机构信息

Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China.

出版信息

Nanoscale. 2018 Feb 15;10(7):3307-3319. doi: 10.1039/c7nr08047f.

Abstract

Scalable manufacturing continues to present a major barrier for clinical translation of nanotherapeutics. Methods available for fabricating protein-encapsulating nanoparticles in a scalable fashion are scarce. Protein delivery often requires multiple functionalities to be incorporated into the same vehicle. Specifically for nanoparticle-mediated oral delivery of protein therapeutics, protection in GI tract, site-specific release, facilitating transmucosal permeation, and enhancing epithelial transport are a few desirable features to be engineered into a nanoparticle system. Here we devised a sequential flash nanocomplexation (FNC) technique for the scalable production of a core-shell structured nanoparticle system by combining materials choice and particle size and structure to fulfill these functions, therefore enhancing the delivery efficiency of insulin. This method is highly effective in controlling the size, generating core-shell structure with high encapsulation efficiency (97%) and payload capacity (67%) using insulin/l-penetratin complex nanoparticles as a core coated with hyaluronic acid (HA). Both the in vitro and in vivo models confirmed that the HA coating on these core-shell nanoparticles enhanced the permeation of nanoparticles through the intestinal mucus layer and improved trans-epithelial absorption of insulin nanoparticles; and the enhancement effect was most prominent using HA with the highest average molecular weight. The insulin-loaded nanoparticles were then encapsulated into enteric microcapsules (MCs) in an FNC process to provide additional protection against the acidic environment in the stomach while allowing rapid release of insulin nanoparticles when they reach small intestine. The optimized multifunctional MCs delivered an effective glucose reduction in a Type I diabetes rat model following a single oral administration, yielding a relative bioavailability of 11% in comparison with subcutaneous injection of free-form insulin. This FNC technique is highly effective in controlling particle size and structure to improve delivery properties and function. It can be easily extended to oral delivery for other protein therapeutics.

摘要

可扩展制造仍然是纳米治疗临床转化的主要障碍。可用于以可扩展方式制造包封蛋白质的纳米粒子的方法很少。蛋白质递药通常需要将多种功能整合到同一载体中。具体来说,对于纳米颗粒介导的蛋白质治疗剂的口服递药,在胃肠道中得到保护、在特定部位释放、促进跨黏膜渗透以及增强上皮转运是需要工程设计到纳米颗粒系统中的几个理想特征。在这里,我们设计了一种顺序闪光纳米复合(FNC)技术,通过结合材料选择和颗粒大小和结构来可扩展地生产核壳结构的纳米颗粒系统,从而提高胰岛素的递药效率。该方法在控制尺寸方面非常有效,使用胰岛素/穿膜肽复合物纳米粒作为核心,采用具有高包封效率(97%)和载药能力(67%)的核壳结构,生成核心-壳结构。体外和体内模型均证实,这些核壳纳米粒上的 HA 涂层增强了纳米粒通过肠黏液层的渗透,并提高了胰岛素纳米粒的跨上皮吸收;并且使用平均分子量最高的 HA 时,增强效果最为显著。然后,将载胰岛素的纳米粒包封到 FNC 过程中的肠溶微胶囊(MC)中,以在胃中的酸性环境中提供额外的保护,同时允许胰岛素纳米粒在到达小肠时快速释放。优化后的多功能 MC 在 I 型糖尿病大鼠模型中单次口服给药后有效降低血糖,与皮下注射游离形式胰岛素相比,相对生物利用度为 11%。这种 FNC 技术在控制颗粒尺寸和结构以改善递药性质和功能方面非常有效。它可以很容易地扩展到其他蛋白质治疗剂的口服递药。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验