Simpson Querrey Institute for BioNanotechnology, Northwestern University , 303 East Superior, Chicago, Illinois 60611, United States.
Department of Surgery, University of North Carolina at Chapel Hill , 101 Manning Drive, Chapel Hill, North Carolina 27599, United States.
ACS Appl Mater Interfaces. 2018 Feb 28;10(8):6904-6916. doi: 10.1021/acsami.7b18525. Epub 2018 Feb 13.
Disorders of blood vessels cause a range of severe health problems. As a powerful vasodilator and cellular second messenger, nitric oxide (NO) is known to have beneficial vascular functions. However, NO typically has a short half-life and is not specifically targeted. On the other hand, high-density lipoproteins (HDLs) are targeted natural nanoparticles (NPs) that transport cholesterol in the systemic circulation and whose protective effects in vascular homeostasis overlap with those of NO. Evolving the AuNP-templated HDL-like nanoparticles (HDL NPs), a platform of bioinspired HDL, we set up a targeted biomimetic nanotherapy for vascular disease that combines the functions of NO and HDL. A synthetic S-nitrosylated (SNO) phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphonitrosothioethanol) was synthesized and assembled with S-containing phospholipids and the principal protein of HDL, apolipoprotein A-I, to construct NO-delivering HDL-like particles (SNO HDL NPs). SNO HDL NPs self-assemble under mild conditions similar to natural processes, avoiding the complex postassembly modification needed for most synthetic NO-release nanoparticles. In vitro data demonstrate that the SNO HDL NPs merge the functional properties of NO and HDL into a targeted nanocarrier. Also, SNO HDL NPs were demonstrated to reduce ischemia/reperfusion injury in vivo in a mouse kidney transplant model and atherosclerotic plaque burden in a mouse model of atherosclerosis. Thus, the synthesis of SNO HDL NPs provides not only a bioinspired nanotherapy for vascular disease but also a foundation to construct diversified multifunctional platforms based on HDL NPs in the future.
血管疾病会引起一系列严重的健康问题。一氧化氮(NO)作为一种强大的血管舒张剂和细胞第二信使,具有有益的血管功能。然而,NO 的半衰期通常很短,且没有特定的靶向性。另一方面,高密度脂蛋白(HDL)是靶向天然纳米颗粒(NPs),可在全身循环中运输胆固醇,其在血管稳态中的保护作用与 NO 重叠。我们利用 AuNP 模板化的 HDL 样纳米颗粒(HDL NPs),这是一种仿生 HDL 的平台,构建了一种针对血管疾病的靶向仿生纳米疗法,将 NO 和 HDL 的功能结合在一起。合成了一种 S-亚硝基化(SNO)磷脂(1,2-二棕榈酰-sn-甘油-3-磷酸硝硫醇),并与含 S 的磷脂和 HDL 的主要蛋白载脂蛋白 A-I 组装,构建了输送 NO 的 HDL 样颗粒(SNO HDL NPs)。SNO HDL NPs 在类似于天然过程的温和条件下自组装,避免了大多数合成 NO 释放纳米颗粒所需的复杂的组装后修饰。体外数据表明,SNO HDL NPs 将 NO 和 HDL 的功能特性融合到一种靶向纳米载体中。此外,SNO HDL NPs 在小鼠肾移植模型中减少了缺血/再灌注损伤,在动脉粥样硬化小鼠模型中减少了动脉粥样硬化斑块负担。因此,SNO HDL NPs 的合成不仅为血管疾病提供了一种仿生纳米疗法,而且为未来基于 HDL NPs 构建多样化多功能平台奠定了基础。