Suppr超能文献

使用球面均值技术对人体颈脊髓进行体内多室扩散特征分析。

Multi-compartmental diffusion characterization of the human cervical spinal cord in vivo using the spherical mean technique.

作者信息

By Samantha, Xu Junzhong, Box Bailey A, Bagnato Francesca R, Smith Seth A

机构信息

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

NMR Biomed. 2018 Apr;31(4):e3894. doi: 10.1002/nbm.3894. Epub 2018 Feb 1.

Abstract

The purpose of this work was to evaluate the feasibility and reproducibility of the spherical mean technique (SMT), a multi-compartmental diffusion model, in the spinal cord of healthy controls, and to assess its ability to improve spinal cord characterization in multiple sclerosis (MS) patients at 3 T. SMT was applied in the cervical spinal cord of eight controls and six relapsing-remitting MS patients. SMT provides an elegant framework to model the apparent axonal volume fraction v , intrinsic diffusivity D , and extra-axonal transverse diffusivity D (which is estimated as a function of v and D ) without confounds related to complex fiber orientation distribution that reside in diffusion MRI modeling. SMT's reproducibility was assessed with two different scans within a month, and SMT-derived indices in healthy and MS cohorts were compared. The influence of acquisition scheme on SMT was also evaluated. SMT's v , D , and D measurements all showed high reproducibility. A decrease in v was observed at the site of lesions and normal appearing white matter (p < 0.05), and trends towards a decreased D and increased D were seen. Importantly, a twofold reduction in acquisition yielded similarly high accuracy with SMT. SMT provides a fast, reproducible, and accurate method to improve characterization of the cervical spinal cord, and may have clinical potential for MS patients.

摘要

本研究的目的是评估球形均值技术(SMT)这一多室扩散模型在健康对照者脊髓中的可行性和可重复性,并评估其在3T场强下改善多发性硬化症(MS)患者脊髓特征描述的能力。SMT应用于8名对照者和6名复发缓解型MS患者的颈髓。SMT提供了一个精妙的框架,用于对表观轴突体积分数v、固有扩散率D和轴突外横向扩散率D(其根据v和D估算)进行建模,而不会受到扩散MRI建模中复杂纤维取向分布相关混淆因素的影响。在一个月内通过两次不同扫描评估SMT的可重复性,并比较健康队列和MS队列中SMT得出的指标。还评估了采集方案对SMT的影响。SMT的v、D和D测量结果均显示出高可重复性。在病变部位和外观正常的白质中观察到v降低(p<0.05),并发现D有降低趋势,D有升高趋势。重要的是,采集次数减少一半时,SMT仍能产生同样高的准确性。SMT提供了一种快速、可重复且准确的方法来改善颈髓的特征描述,对MS患者可能具有临床应用潜力。

相似文献

2
Probing axons using multi-compartmental diffusion in multiple sclerosis.
Ann Clin Transl Neurol. 2019 Sep;6(9):1595-1605. doi: 10.1002/acn3.50836. Epub 2019 Aug 13.
3
Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients.
Neuroimage Clin. 2017 May 17;15:333-342. doi: 10.1016/j.nicl.2017.05.010. eCollection 2017.
6
Perilesional neurodegenerative injury in multiple sclerosis: Relation to focal lesions and impact on disability.
Mult Scler Relat Disord. 2021 Apr;49:102738. doi: 10.1016/j.msard.2021.102738. Epub 2021 Jan 5.
7
Clinical Relevance of Multiparametric MRI Assessment of Cervical Cord Damage in Multiple Sclerosis.
Radiology. 2020 Sep;296(3):605-615. doi: 10.1148/radiol.2020200430. Epub 2020 Jun 23.
8
Spatial distribution of multiple sclerosis lesions in the cervical spinal cord.
Brain. 2019 Mar 1;142(3):633-646. doi: 10.1093/brain/awy352.
9
Improving the Assessment of Axonal Injury in Early Multiple Sclerosis.
Acad Radiol. 2025 Feb;32(2):1002-1014. doi: 10.1016/j.acra.2024.08.048. Epub 2024 Sep 14.
10
7 T imaging reveals a gradient in spinal cord lesion distribution in multiple sclerosis.
Brain. 2020 Oct 1;143(10):2973-2987. doi: 10.1093/brain/awaa249.

引用本文的文献

1
Characterization of neurite and soma organization in the brain and spinal cord with diffusion MRI.
Imaging Neurosci (Camb). 2025 Aug 19;3. doi: 10.1162/IMAG.a.111. eCollection 2025.
2
Linking Psychotic-Like Experiences and Brain White Matter Microstructure in Young Women.
Brain Behav. 2025 Jun;15(6):e70587. doi: 10.1002/brb3.70587.
3
Characterization of neurite and soma organization in the brain and spinal cord with diffusion MRI.
bioRxiv. 2025 Feb 20:2025.02.19.638936. doi: 10.1101/2025.02.19.638936.
4
Status in Brain Gliomas Can Be Predicted by the Spherical Mean MRI Technique.
AJNR Am J Neuroradiol. 2025 Jan 8;46(1):121-128. doi: 10.3174/ajnr.A8432.
8
Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions.
Neuroimage Clin. 2022;36:103244. doi: 10.1016/j.nicl.2022.103244. Epub 2022 Oct 21.

本文引用的文献

1
Sensitivity of multi-shell NODDI to multiple sclerosis white matter changes: a pilot study.
Funct Neurol. 2017 Apr/Jun;32(2):97-101. doi: 10.11138/fneur/2017.32.2.097.
2
Intracellular water preexchange lifetime in neurons and astrocytes.
Magn Reson Med. 2018 Mar;79(3):1616-1627. doi: 10.1002/mrm.26781. Epub 2017 Jul 4.
3
Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients.
Neuroimage Clin. 2017 May 17;15:333-342. doi: 10.1016/j.nicl.2017.05.010. eCollection 2017.
4
Multi-compartment microscopic diffusion imaging.
Neuroimage. 2016 Oct 1;139:346-359. doi: 10.1016/j.neuroimage.2016.06.002. Epub 2016 Jun 6.
5
In vivo mapping of human spinal cord microstructure at 300mT/m.
Neuroimage. 2015 Sep;118:494-507. doi: 10.1016/j.neuroimage.2015.06.038. Epub 2015 Jun 19.
6
Quantitative mapping of the per-axon diffusion coefficients in brain white matter.
Magn Reson Med. 2016 Apr;75(4):1752-63. doi: 10.1002/mrm.25734. Epub 2015 May 13.
7
Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo.
Neuroimage. 2015 May 1;111:590-601. doi: 10.1016/j.neuroimage.2015.01.045. Epub 2015 Jan 31.
8
Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy.
Neuroimage. 2014 Dec;103:10-19. doi: 10.1016/j.neuroimage.2014.09.006. Epub 2014 Sep 16.
9
Groupwise multi-atlas segmentation of the spinal cord's internal structure.
Med Image Anal. 2014 Apr;18(3):460-71. doi: 10.1016/j.media.2014.01.003. Epub 2014 Feb 5.
10
A ranking of diffusion MRI compartment models with in vivo human brain data.
Magn Reson Med. 2014 Dec;72(6):1785-92. doi: 10.1002/mrm.25080. Epub 2013 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验