Suppr超能文献

中央静脉征与扩散磁共振成像可区分合并症多发性硬化症患者白质病变内的微观结构特征。

Central vein sign and diffusion MRI differentiate microstructural features within white matter lesions of multiple sclerosis patients with comorbidities.

作者信息

Lapucci Caterina, Tazza Francesco, Rebella Silvia, Boffa Giacomo, Sbragia Elvira, Bruschi Nicolò, Mancuso Elisabetta, Mavilio Nicola, Signori Alessio, Roccatagliata Luca, Cellerino Maria, Schiavi Simona, Inglese Matilde

机构信息

HNSR, IRRCS Ospedale Policlinico San Martino, Genoa, Italy.

Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.

出版信息

Front Neurol. 2023 Mar 8;14:1084661. doi: 10.3389/fneur.2023.1084661. eCollection 2023.

Abstract

INTRODUCTION

The Central Vein Sign (CVS) has been suggested as a potential biomarker to improve diagnostic specificity in multiple sclerosis (MS). Nevertheless, the impact of comorbidities on CVS performance has been poorly investigated so far. Despite the similar features shared by MS, migraine and Small Vessel Disease (SVD) at T2-weighted conventional MRI sequences, studies demonstrated their heterogeneous histopathological substrates. If in MS, inflammation, primitive demyelination and axonal loss coexist, in SVD demyelination is secondary to ischemic microangiopathy, while the contemporary presence of inflammatory and ischemic processes has been suggested in migraine. The aims of this study were to investigate the impact of comorbidities (risk factors for SVD and migraine) on the global and subregional assessment of the CVS in a large cohort of MS patients and to apply the Spherical Mean Technique (SMT) diffusion model to evaluate whether perivenular and non-perivenular lesions show distinctive microstructural features.

METHODS

120 MS patients stratified into 4 Age Groups performed 3T brain MRI. WM lesions were classified in "perivenular" and "non-perivenular" by visual inspection of FLAIR images; mean values of SMT metrics, indirect estimators of inflammation, demyelination and fiber disruption (EXTRAMD: extraneurite mean diffusivity, EXTRATRANS: extraneurite transverse diffusivity and INTRA: intraneurite signal fraction, respectively) were extracted.

RESULTS

Of the 5303 lesions selected for the CVS assessment, 68.7% were perivenular. Significant differences were found between perivenular and non-perivenular lesion volume in the whole brain ( < 0.001) and between perivenular and non-perivenular lesion volume and number in all the four subregions ( < 0.001 for all). The percentage of perivenular lesions decreased from youngest to oldest patients (79.7%-57.7%), with the deep/subcortical WM of oldest patients as the only subregion where the number of non-perivenular was higher than the number of perivenular lesions. Older age and migraine were independent predictors of a higher percentage of non-perivenular lesions ( < 0.001 and = 0.013 respectively). Whole brain perivenular lesions showed higher inflammation, demyelination and fiber disruption than non perivenular lesions ( = 0.001, = 0.001 and = 0.02 for EXTRAMD, EXTRATRANS and INTRA respectively). Similar findings were found in the deep/subcortical WM ( = 0.001 for all). Compared to non-perivenular lesions, (i) perivenular lesions located in periventricular areas showed a more severe fiber disruption ( = 0.001), (ii) perivenular lesions located in juxtacortical and infratentorial regions exhibited a higher degree of inflammation ( = 0.01 and = 0.05 respectively) and (iii) perivenular lesions located in infratentorial areas showed a higher degree of demyelination ( = 0.04).

DISCUSSION

Age and migraine have a relevant impact in reducing the percentage of perivenular lesions, particularly in the deep/subcortical WM. SMT may differentiate perivenular lesions, characterized by higher inflammation, demyelination and fiber disruption, from non perivenular lesions, where these pathological processes seemed to be less pronounced. The development of new non-perivenular lesions, especially in the deep/subcortical WM of older patients, should be considered a "red flag" for a different -other than MS- pathophysiology.

摘要

引言

中央静脉征(CVS)已被提议作为一种潜在的生物标志物,以提高多发性硬化症(MS)诊断的特异性。然而,迄今为止,合并症对CVS表现的影响尚未得到充分研究。尽管在T2加权常规MRI序列上,MS、偏头痛和小血管疾病(SVD)具有相似特征,但研究表明它们的组织病理学基础存在异质性。在MS中,炎症、原发性脱髓鞘和轴突丢失并存;在SVD中,脱髓鞘继发于缺血性微血管病变;而在偏头痛中,已有人提出存在炎症和缺血过程。本研究的目的是调查合并症(SVD和偏头痛的危险因素)对一大群MS患者CVS整体和分区评估的影响,并应用球面均值技术(SMT)扩散模型来评估血管周围和非血管周围病变是否具有独特的微观结构特征。

方法

120例MS患者被分为4个年龄组,进行了3T脑MRI检查。通过对液体衰减反转恢复(FLAIR)图像的目视检查,将白质病变分为“血管周围”和“非血管周围”;提取了SMT指标的平均值,这些指标分别是炎症、脱髓鞘和纤维破坏的间接估计值(EXTRAMD:神经突外平均扩散率、EXTRATRANS:神经突外横向扩散率和INTRA:神经突内信号分数)。

结果

在为CVS评估所选的5303个病变中,68.7%为血管周围病变。全脑血管周围和非血管周围病变体积之间存在显著差异(<0.001),并且在所有四个子区域中,血管周围和非血管周围病变的体积和数量之间也存在显著差异(所有均<0.001)。血管周围病变的百分比从最年轻患者到最年长患者逐渐下降(79.7%-57.7%),最年长患者的深部/皮质下白质是唯一非血管周围病变数量高于血管周围病变数量的子区域。年龄较大和偏头痛是血管周围病变百分比较高的独立预测因素(分别为<0.001和=0.013)。全脑血管周围病变比非血管周围病变表现出更高的炎症、脱髓鞘和纤维破坏(EXTRAMD、EXTRATRANS和INTRA的P值分别为0.001、0.001和0.02)。在深部/皮质下白质中也发现了类似的结果(所有P值均为0.001)。与非血管周围病变相比,(i)位于脑室周围区域的血管周围病变表现出更严重的纤维破坏(P=0.001),(ii)位于皮质旁和幕下区域的血管周围病变表现出更高程度的炎症(P分别为0.01和0.05),(iii)位于幕下区域的血管周围病变表现出更高程度的脱髓鞘(P=0.04)。

讨论

年龄和偏头痛对降低血管周围病变的百分比有显著影响,特别是在深部/皮质下白质中。SMT可以区分以更高的炎症、脱髓鞘和纤维破坏为特征的血管周围病变和这些病理过程似乎不太明显的非血管周围病变。新的非血管周围病变的出现,尤其是在老年患者的深部/皮质下白质中,应被视为一种不同于MS的病理生理学的“警示信号”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3947/10030505/fb15f5d60cef/fneur-14-1084661-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验