Suppr超能文献

深度神经网络在从面部图像中检测性取向方面比人类更准确。

Deep neural networks are more accurate than humans at detecting sexual orientation from facial images.

机构信息

Graduate School of Business, Stanford University.

出版信息

J Pers Soc Psychol. 2018 Feb;114(2):246-257. doi: 10.1037/pspa0000098.

Abstract

We show that faces contain much more information about sexual orientation than can be perceived or interpreted by the human brain. We used deep neural networks to extract features from 35,326 facial images. These features were entered into a logistic regression aimed at classifying sexual orientation. Given a single facial image, a classifier could correctly distinguish between gay and heterosexual men in 81% of cases, and in 71% of cases for women. Human judges achieved much lower accuracy: 61% for men and 54% for women. The accuracy of the algorithm increased to 91% and 83%, respectively, given five facial images per person. Facial features employed by the classifier included both fixed (e.g., nose shape) and transient facial features (e.g., grooming style). Consistent with the prenatal hormone theory of sexual orientation, gay men and women tended to have gender-atypical facial morphology, expression, and grooming styles. Prediction models aimed at gender alone allowed for detecting gay males with 57% accuracy and gay females with 58% accuracy. Those findings advance our understanding of the origins of sexual orientation and the limits of human perception. Additionally, given that companies and governments are increasingly using computer vision algorithms to detect people's intimate traits, our findings expose a threat to the privacy and safety of gay men and women. (PsycINFO Database Record

摘要

我们发现,人脸所包含的性取向信息,远远超过人类大脑所能感知或解读的信息。我们使用深度神经网络从 35326 张面部图像中提取特征。这些特征被输入到一个逻辑回归分类器中,以确定性取向。对于单个面部图像,分类器可以在 81%的情况下正确区分男同性恋者和异性恋者,在 71%的情况下正确区分女同性恋者和异性恋者。而人类裁判的准确率要低得多:男性为 61%,女性为 54%。如果每人提供五张面部图像,算法的准确率分别提高到 91%和 83%。分类器所采用的面部特征包括固定特征(如鼻子形状)和瞬态面部特征(如修饰风格)。同性恋男性和女性的面部形态、表情和修饰风格往往具有性别非典型性,这与性取向的产前激素理论一致。仅针对性别的预测模型可以以 57%的准确率识别出男同性恋者,以 58%的准确率识别出女同性恋者。这些发现有助于我们理解性取向的起源和人类感知的局限性。此外,由于公司和政府越来越多地使用计算机视觉算法来检测人们的隐私特征,我们的发现揭示了性取向为男同性恋者和女同性恋者的个人隐私和安全带来的威胁。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验