Suppr超能文献

用于空间数据的梯度提升树及其在医学成像数据中的应用。

Gradient Boosted Trees for Spatial Data and Its Application to Medical Imaging Data.

作者信息

Iranzad Reza, Liu Xiao, Chaovalitwongse W Art, Hippe Daniel, Wang Shouyi, Han Jie, Thammasorn Phawis, Duan Chunyan, Zeng Jing, Bowen Stephen

机构信息

Department of Industrial Engineering, University of Arkansas.

Department of Radiology, University of Washington.

出版信息

IISE Trans Healthc Syst Eng. 2022;12(3):165-179. doi: 10.1080/24725579.2021.1995536. Epub 2021 Nov 9.

Abstract

Boosting Trees are one of the most successful statistical learning approaches that involve sequentially growing an ensemble of simple regression trees ("weak learners"). This paper proposes a gradient Boosted Trees algorithm for Spatial Data (Boost-S) with covariate information. Boost-S integrates the spatial correlation into the classical framework of eXtreme Gradient Boosting. Each tree is constructed by solving a regularized optimization problem, where the objective function takes into account the underlying spatial correlation and involves two penalty terms on tree complexity. A computationally-efficient greedy heuristic algorithm is proposed to obtain an ensemble of trees. The proposed Boost-S is applied to the spatially-correlated FDG-PET (fluorodeoxyglucose-positron emission tomography) imaging data collected from clinical trials of cancer chemoradiotherapy. Our numerical investigations successfully demonstrate the advantages of the proposed Boost-S over existing approaches for this particular application.

摘要

提升树是最成功的统计学习方法之一,它涉及顺序生长一组简单的回归树(“弱学习器”)。本文提出了一种用于具有协变量信息的空间数据的梯度提升树算法(Boost-S)。Boost-S将空间相关性集成到极端梯度提升的经典框架中。每棵树通过求解一个正则化优化问题来构建,其中目标函数考虑了潜在的空间相关性,并涉及两个关于树复杂度的惩罚项。提出了一种计算效率高的贪心启发式算法来获得一组树。所提出的Boost-S应用于从癌症放化疗临床试验中收集的空间相关的FDG-PET(氟脱氧葡萄糖-正电子发射断层扫描)成像数据。我们的数值研究成功地证明了所提出的Boost-S在此特定应用中相对于现有方法的优势。

相似文献

5
Learning Nonlinear Functions Using Regularized Greedy Forest.使用正则化贪心森林学习非线性函数。
IEEE Trans Pattern Anal Mach Intell. 2014 May;36(5):942-54. doi: 10.1109/TPAMI.2013.159.
8
BoostTree and BoostForest for Ensemble Learning.BoostTree 和 BoostForest 用于集成学习。
IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):8110-8126. doi: 10.1109/TPAMI.2022.3227370. Epub 2023 Jun 5.
9
A working guide to boosted regression trees.提升回归树实用指南。
J Anim Ecol. 2008 Jul;77(4):802-13. doi: 10.1111/j.1365-2656.2008.01390.x. Epub 2008 Apr 8.

本文引用的文献

4
Gradient Boosted Trees for Corrective Learning.用于矫正学习的梯度提升树
Mach Learn Med Imaging. 2017 Sep;10541:203-211. doi: 10.1007/978-3-319-67389-9_24. Epub 2017 Sep 7.
8
High-Dimensional Bayesian Geostatistics.高维贝叶斯地质统计学
Bayesian Anal. 2017 Jun;12(2):583-614. doi: 10.1214/17-BA1056R. Epub 2017 May 16.
10
Gaussian predictive process models for large spatial data sets.用于大型空间数据集的高斯预测过程模型。
J R Stat Soc Series B Stat Methodol. 2008 Sep 1;70(4):825-848. doi: 10.1111/j.1467-9868.2008.00663.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验