Iranzad Reza, Liu Xiao, Chaovalitwongse W Art, Hippe Daniel, Wang Shouyi, Han Jie, Thammasorn Phawis, Duan Chunyan, Zeng Jing, Bowen Stephen
Department of Industrial Engineering, University of Arkansas.
Department of Radiology, University of Washington.
IISE Trans Healthc Syst Eng. 2022;12(3):165-179. doi: 10.1080/24725579.2021.1995536. Epub 2021 Nov 9.
Boosting Trees are one of the most successful statistical learning approaches that involve sequentially growing an ensemble of simple regression trees ("weak learners"). This paper proposes a gradient Boosted Trees algorithm for Spatial Data (Boost-S) with covariate information. Boost-S integrates the spatial correlation into the classical framework of eXtreme Gradient Boosting. Each tree is constructed by solving a regularized optimization problem, where the objective function takes into account the underlying spatial correlation and involves two penalty terms on tree complexity. A computationally-efficient greedy heuristic algorithm is proposed to obtain an ensemble of trees. The proposed Boost-S is applied to the spatially-correlated FDG-PET (fluorodeoxyglucose-positron emission tomography) imaging data collected from clinical trials of cancer chemoradiotherapy. Our numerical investigations successfully demonstrate the advantages of the proposed Boost-S over existing approaches for this particular application.
提升树是最成功的统计学习方法之一,它涉及顺序生长一组简单的回归树(“弱学习器”)。本文提出了一种用于具有协变量信息的空间数据的梯度提升树算法(Boost-S)。Boost-S将空间相关性集成到极端梯度提升的经典框架中。每棵树通过求解一个正则化优化问题来构建,其中目标函数考虑了潜在的空间相关性,并涉及两个关于树复杂度的惩罚项。提出了一种计算效率高的贪心启发式算法来获得一组树。所提出的Boost-S应用于从癌症放化疗临床试验中收集的空间相关的FDG-PET(氟脱氧葡萄糖-正电子发射断层扫描)成像数据。我们的数值研究成功地证明了所提出的Boost-S在此特定应用中相对于现有方法的优势。