Suppr超能文献

甲酰甘氨脒合成酶的底物特异性。

Substrate specificity of formylglycinamidine synthetase.

作者信息

Schendel F J, Stubbe J

出版信息

Biochemistry. 1986 Apr 22;25(8):2256-64. doi: 10.1021/bi00356a061.

Abstract

Formylglycinamidine ribonucleotide (FGAM) synthetase, which catalyzes the conversion of formylglycinamide ribonucleotide (FGAR), glutamine, and ATP to FGAM, ADP, glutamate, and Pi, has been purified to homogeneity (sp act. 0.20 mumol min-1 mg-1) from chicken liver by an alternative procedure to that of Buchanan et al. [Buchanan, J. M., Ohnoki, S., & Hong, B. S. (1978) Methods Enzymol. 51, 193-201] (sp act. 0.12 mumol min-1 mg-1). A variety of new analogues of formylglycinamide ribonucleotide have been prepared in which the formylglycinamide arm (R = CH2NHCHO) has been replaced by R = CH3, CH2OH, CH2Cl, CH2NH3, CH2NHCOCH3, CH2NHCOCH2Cl, CH2NHCO2CH2Ph, and L-CHC-H3NHCHO. These compounds have been characterized by 1H and 13C NMR spectroscopy. With compounds R = CH3, CH2OH, and CH2NHCOCH3 and ATP, in the presence or absence of glutamine, FGAM synthetase catalyzes the production of Pi at 4.5, 48, and 20%, respectively, the rate of production of Pi from formylglycinamide ribonucleotide. Only R = CH2NHCOCH3 causes glutaminase activity as well as ATPase activity and has been shown to be converted to the amidine analogue. Both FGAR (R = CH2NHCHO) and the FGAR analogue (R = CH2NHCHOCH3) in the presence of ATP and FGAM synthetase and in the absence of glutamine form a complex isolable by Sephadex G-50 chromatography. FGAM synthetase is thus highly specific for its formylglycine side chain. [18O]-beta-FGAR was prepared biosynthetically, and FGAM synthetase was shown by 31P NMR spectroscopy to catalyze the transfer of amide 18O to inorganic phosphate.

摘要

甲酰甘氨脒核苷酸(FGAM)合成酶催化甲酰甘氨酰胺核苷酸(FGAR)、谷氨酰胺和ATP转化为FGAM、ADP、谷氨酸和无机磷酸,通过一种不同于布坎南等人[布坎南,J.M.,大野木,S.,&洪,B.S.(1978年)《酶学方法》51,193 - 201](比活性0.12 μmol min⁻¹ mg⁻¹)的方法,从鸡肝中纯化至同质(比活性0.20 μmol min⁻¹ mg⁻¹)。已制备了多种甲酰甘氨酰胺核苷酸的新类似物,其中甲酰甘氨酰胺臂(R = CH₂NHCHO)被R = CH₃、CH₂OH、CH₂Cl、CH₂NH₃、CH₂NHCOCH₃、CH₂NHCOCH₂Cl、CH₂NHCO₂CH₂Ph和L - CHC - H₃NHCHO取代。这些化合物已通过¹H和¹³C核磁共振光谱进行了表征。对于化合物R = CH₃、CH₂OH和CH₂NHCOCH₃与ATP,无论有无谷氨酰胺,FGAM合成酶分别催化产生无机磷酸的速率为从甲酰甘氨酰胺核苷酸产生无机磷酸速率的4.5%、48%和20%。只有R = CH₂NHCOCH₃会引起谷氨酰胺酶活性以及ATP酶活性,并且已被证明会转化为脒类似物。在ATP和FGAM合成酶存在且无谷氨酰胺的情况下,FGAR(R = CH₂NHCHO)和FGAR类似物(R = CH₂NHCHOCH₃)都会形成一种可通过Sephadex G - 50色谱分离的复合物。因此,FGAM合成酶对其甲酰甘氨酸侧链具有高度特异性。通过生物合成制备了[¹⁸O] - β - FGAR,并且通过³¹P核磁共振光谱表明FGAM合成酶催化酰胺¹⁸O转移至无机磷酸。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验