Li C, Kappock T J, Stubbe J, Weaver T M, Ealick S E
Department of Chemistry and Chemical Biology Cornell University Ithaca, New York 14853, USA.
Structure. 1999 Sep 15;7(9):1155-66. doi: 10.1016/s0969-2126(99)80182-8.
The purine biosynthetic pathway in procaryotes enlists eleven enzymes, six of which use ATP. Enzymes 5 and 6 of this pathway, formylglycinamide ribonucleotide (FGAR) amidotransferase (PurL) and aminoimidazole ribonucleotide (AIR) synthetase (PurM) utilize ATP to activate the oxygen of an amide within their substrate toward nucleophilic attack by a nitrogen. AIR synthetase uses the product of PurL, formylglycinamidine ribonucleotide (FGAM) and ATP to make AIR, ADP and P(i).
The structure of a hexahistidine-tagged PurM has been solved by multiwavelength anomalous diffraction phasing techniques using protein containing 28 selenomethionines per asymmetric unit. The final model of PurM consists of two crystallographically independent dimers and four sulfates. The overall R factor at 2.5 A resolution is 19.2%, with an R(free) of 26.4%. The active site, identified in part by conserved residues, is proposed to be a long groove generated by the interaction of two monomers. A search of the sequence databases suggests that the ATP-binding sites between PurM and PurL may be structurally conserved.
The first structure of a new class of ATP-binding enzyme, PurM, has been solved and a model for the active site has been proposed. The structure is unprecedented, with an extensive and unusual sheet-mediated intersubunit interaction defining the active-site grooves. Sequence searches suggest that two successive enzymes in the purine biosynthetic pathway, proposed to use similar chemistries, will have similar ATP-binding domains.
原核生物中的嘌呤生物合成途径需要11种酶,其中6种使用ATP。该途径中的酶5和酶6,即甲酰甘氨酰胺核糖核苷酸(FGAR)酰胺转移酶(PurL)和氨基咪唑核糖核苷酸(AIR)合成酶(PurM)利用ATP来活化其底物中酰胺的氧,以便被氮进行亲核攻击。AIR合成酶利用PurL的产物甲酰甘脒核糖核苷酸(FGAM)和ATP生成AIR、ADP和无机磷酸(Pi)。
已通过多波长反常衍射相位技术解析了带有六组氨酸标签的PurM的结构,该技术使用的蛋白质每个不对称单元含有28个硒代甲硫氨酸。PurM的最终模型由两个晶体学独立的二聚体和四个硫酸根组成。在2.5埃分辨率下的整体R因子为19.2%,自由R因子为26.4%。部分由保守残基确定的活性位点被认为是由两个单体相互作用产生的一条长沟。对序列数据库的搜索表明,PurM和PurL之间的ATP结合位点在结构上可能是保守的。
已解析了一类新型ATP结合酶PurM的首个结构,并提出了活性位点模型。该结构是前所未有的,具有广泛且不寻常的由片层介导的亚基间相互作用,从而确定了活性位点沟。序列搜索表明,嘌呤生物合成途径中两个连续的酶,推测使用相似的化学机制,将具有相似的ATP结合结构域。