Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA.
Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
FASEB J. 2018 Jun;32(6):3149-3165. doi: 10.1096/fj.201701127R. Epub 2018 Jan 17.
Apolipoprotein A-I (apoA-I) shares with other exchangeable apolipoproteins a high level of structural plasticity. In the lipid-free state, the apolipoprotein amphipathic α-helices interact intra- and intermolecularly, providing structural stabilization by self-association. We have reported that lipid-free apoA-I becomes amyloidogenic upon physiologically relevant (myeloperoxidase-mediated) Met oxidation. In this study, we established that Met oxidation promotes amyloidogenesis by reducing the stability of apoA-I monomers and irreversibly disrupting self-association. The oxidized apoA-I monomers also exhibited increased cellular cholesterol release capacity and stronger association with macrophages, compared to nonoxidized apoA-I. Of physiologic relevance, preformed oxidized apoA-I amyloid fibrils induced amyloid formation in nonoxidized apoA-I. This process was enhanced when self-association of nonoxidized apoA-I was disrupted by thermal treatment. Solid state NMR analysis revealed that aggregates formed by seeded nonoxidized apoA-I were structurally similar to those formed by the oxidized protein, featuring a β-structure-rich amyloid fold alongside α-helices retained from the native state. In atherosclerotic lesions, the conditions that promote apoA-I amyloid formation are readily available: myeloperoxidase, active oxygen species, low pH, and high concentration of lipid-free apoA-I. Our results suggest that even partial Met oxidation of apoA-I can nucleate amyloidogenesis, thus sequestering and inactivating otherwise antiatherogenic and HDL-forming apoA-I.-Witkowski, A., Chan, G. K. L., Boatz, J. C., Li, N. J., Inoue, A. P., Wong, J. C., van der Wel, P. C. A., Cavigiolio, G. Methionine oxidized apolipoprotein A-I at the crossroads of HDL biogenesis and amyloid formation.
载脂蛋白 A-I(apoA-I)与其他可交换载脂蛋白一样,具有高度的结构可塑性。在无脂状态下,载脂蛋白的两亲性α-螺旋在分子内和分子间相互作用,通过自组装提供结构稳定性。我们已经报道过,在生理相关的(髓过氧化物酶介导的)Met 氧化作用下,无脂 apoA-I 会变成淀粉样蛋白。在这项研究中,我们确定 Met 氧化通过降低 apoA-I 单体的稳定性并不可逆地破坏自组装来促进淀粉样蛋白形成。与非氧化 apoA-I 相比,氧化的 apoA-I 单体还表现出增强的细胞胆固醇释放能力和与巨噬细胞更强的结合能力。与生理相关的是,预形成的氧化 apoA-I 淀粉样纤维在非氧化 apoA-I 中诱导淀粉样蛋白形成。当通过热处理破坏非氧化 apoA-I 的自组装时,该过程会增强。固态 NMR 分析表明,由种属非氧化 apoA-I 形成的聚集体在结构上与由氧化蛋白形成的聚集体相似,具有富含β-结构的淀粉样蛋白折叠,同时保留来自天然状态的α-螺旋。在动脉粥样硬化病变中,促进 apoA-I 淀粉样蛋白形成的条件很容易获得:髓过氧化物酶、活性氧物质、低 pH 值和高浓度的无脂 apoA-I。我们的结果表明,apoA-I 的即使部分 Met 氧化也可以引发淀粉样蛋白形成,从而隔离和失活原本具有抗动脉粥样硬化和形成 HDL 的 apoA-I。-Witkowski,A.,Chan,G. K. L.,Boatz,J. C.,Li,N. J.,Inoue,A. P.,Wong,J. C.,van der Wel,P. C. A.,Cavigiolio,G. 载脂蛋白 A-I 中蛋氨酸氧化位于 HDL 生物发生和淀粉样蛋白形成的十字路口。