Suppr超能文献

研究水平推理模型和研究集大小对基于坐标的功能磁共振成像元分析的影响。

The Influence of Study-Level Inference Models and Study Set Size on Coordinate-Based fMRI Meta-Analyses.

作者信息

Bossier Han, Seurinck Ruth, Kühn Simone, Banaschewski Tobias, Barker Gareth J, Bokde Arun L W, Martinot Jean-Luc, Lemaitre Herve, Paus Tomáš, Millenet Sabina, Moerkerke Beatrijs

机构信息

Department of Data Analysis, Ghent University, Ghent, Belgium.

Department of Psychiatry and Psychotherapy, University Clinic, Hamburg-Eppendorf, Germany.

出版信息

Front Neurosci. 2018 Jan 18;11:745. doi: 10.3389/fnins.2017.00745. eCollection 2017.

Abstract

Given the increasing amount of neuroimaging studies, there is a growing need to summarize published results. Coordinate-based meta-analyses use the locations of statistically significant local maxima with possibly the associated effect sizes to aggregate studies. In this paper, we investigate the influence of key characteristics of a coordinate-based meta-analysis on (1) the balance between false and true positives and (2) the activation reliability of the outcome from a coordinate-based meta-analysis. More particularly, we consider the influence of the chosen group level model at the study level [fixed effects, ordinary least squares (OLS), or mixed effects models], the type of coordinate-based meta-analysis [Activation Likelihood Estimation (ALE) that only uses peak locations, fixed effects, and random effects meta-analysis that take into account both peak location and height] and the amount of studies included in the analysis (from 10 to 35). To do this, we apply a resampling scheme on a large dataset ( = 1,400) to create a test condition and compare this with an independent evaluation condition. The test condition corresponds to subsampling participants into studies and combine these using meta-analyses. The evaluation condition corresponds to a high-powered group analysis. We observe the best performance when using mixed effects models in individual studies combined with a random effects meta-analysis. Moreover the performance increases with the number of studies included in the meta-analysis. When peak height is not taken into consideration, we show that the popular ALE procedure is a good alternative in terms of the balance between type I and II errors. However, it requires more studies compared to other procedures in terms of activation reliability. Finally, we discuss the differences, interpretations, and limitations of our results.

摘要

鉴于神经影像学研究数量不断增加,总结已发表结果的需求也日益增长。基于坐标的荟萃分析利用具有可能相关效应量的统计显著局部最大值的位置来汇总研究。在本文中,我们研究了基于坐标的荟萃分析的关键特征对(1)假阳性和真阳性之间的平衡以及(2)基于坐标的荟萃分析结果的激活可靠性的影响。更具体地说,我们考虑在研究层面选择的组水平模型[固定效应、普通最小二乘法(OLS)或混合效应模型]、基于坐标的荟萃分析类型[仅使用峰值位置的激活似然估计(ALE)、考虑峰值位置和高度的固定效应和随机效应荟萃分析]以及分析中纳入的研究数量(从10到35)的影响。为此,我们在一个大型数据集(=1400)上应用重采样方案来创建一个测试条件,并将其与独立评估条件进行比较。测试条件对应于将参与者子采样到各个研究中,并使用荟萃分析将这些研究合并起来。评估条件对应于一项高效力的组分析。我们观察到,在个体研究中使用混合效应模型并结合随机效应荟萃分析时性能最佳。此外,性能会随着荟萃分析中纳入的研究数量增加而提高。当不考虑峰值高度时,我们表明,就I型和II型错误之间的平衡而言,流行的ALE程序是一个不错的选择。然而,就激活可靠性而言,与其他程序相比,它需要更多的研究。最后,我们讨论了我们结果的差异、解释和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b96d/5778144/5dad5283c579/fnins-11-00745-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验