Suppr超能文献

基于大脑的认知领域排名预测精神分裂症。

Brain-based ranking of cognitive domains to predict schizophrenia.

机构信息

Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany.

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

Hum Brain Mapp. 2019 Oct 15;40(15):4487-4507. doi: 10.1002/hbm.24716. Epub 2019 Jul 16.

Abstract

Schizophrenia is a devastating brain disorder that disturbs sensory perception, motor action, and abstract thought. Its clinical phenotype implies dysfunction of various mental domains, which has motivated a series of theories regarding the underlying pathophysiology. Aiming at a predictive benchmark of a catalog of cognitive functions, we developed a data-driven machine-learning strategy and provide a proof of principle in a multisite clinical dataset (n = 324). Existing neuroscientific knowledge on diverse cognitive domains was first condensed into neurotopographical maps. We then examined how the ensuing meta-analytic cognitive priors can distinguish patients and controls using brain morphology and intrinsic functional connectivity. Some affected cognitive domains supported well-studied directions of research on auditory evaluation and social cognition. However, rarely suspected cognitive domains also emerged as disease relevant, including self-oriented processing of bodily sensations in gustation and pain. Such algorithmic charting of the cognitive landscape can be used to make targeted recommendations for future mental health research.

摘要

精神分裂症是一种严重的脑部疾病,会干扰感官知觉、运动动作和抽象思维。其临床表型暗示了各种精神领域的功能障碍,这激发了一系列关于潜在病理生理学的理论。为了对认知功能目录进行预测基准测试,我们开发了一种数据驱动的机器学习策略,并在多站点临床数据集(n=324)中提供了原理证明。首先将关于各种认知领域的现有神经科学知识浓缩为神经拓扑图。然后,我们研究了随之而来的认知先验的元分析如何使用大脑形态和内在功能连接来区分患者和对照组。一些受影响的认知领域支持对听觉评估和社会认知的广泛研究方向。然而,很少被怀疑的认知领域也被认为与疾病相关,包括味觉和疼痛中躯体感觉的自我导向处理。这种认知景观的算法绘图可用于为未来的心理健康研究提供有针对性的建议。

相似文献

1
Brain-based ranking of cognitive domains to predict schizophrenia.基于大脑的认知领域排名预测精神分裂症。
Hum Brain Mapp. 2019 Oct 15;40(15):4487-4507. doi: 10.1002/hbm.24716. Epub 2019 Jul 16.
7
Self-consciousness, self-agency, and schizophrenia.自我意识、自我能动性与精神分裂症。
Conscious Cogn. 2003 Dec;12(4):656-69. doi: 10.1016/s1053-8100(03)00071-0.
9
10
Social cognition and functional capacity in bipolar disorder and schizophrenia.双相情感障碍和精神分裂症的社会认知和功能能力。
Psychiatry Res. 2014 Dec 15;220(1-2):309-14. doi: 10.1016/j.psychres.2014.08.035. Epub 2014 Aug 27.

引用本文的文献

8

本文引用的文献

1
Towards Algorithmic Analytics for Large-scale Datasets.面向大规模数据集的算法分析
Nat Mach Intell. 2019 Jul;1(7):296-306. doi: 10.1038/s42256-019-0069-5. Epub 2019 Jul 9.
2
Exploration, Inference, and Prediction in Neuroscience and Biomedicine.神经科学与生物医学中的探索、推理和预测。
Trends Neurosci. 2019 Apr;42(4):251-262. doi: 10.1016/j.tins.2019.02.001. Epub 2019 Feb 23.
3
Interoception and Mental Health: A Roadmap.内感受与心理健康:路线图。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Jun;3(6):501-513. doi: 10.1016/j.bpsc.2017.12.004. Epub 2017 Dec 28.
5
Interoceptive inference: From computational neuroscience to clinic.内感受推断:从计算神经科学到临床。
Neurosci Biobehav Rev. 2018 Jul;90:174-183. doi: 10.1016/j.neubiorev.2018.04.017. Epub 2018 Apr 22.
6
Machine Learning for Precision Psychiatry: Opportunities and Challenges.机器学习在精准精神医学中的机遇与挑战。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Mar;3(3):223-230. doi: 10.1016/j.bpsc.2017.11.007. Epub 2017 Dec 6.
9
Inference in the age of big data: Future perspectives on neuroscience.大数据时代的推理:神经科学的未来展望。
Neuroimage. 2017 Jul 15;155:549-564. doi: 10.1016/j.neuroimage.2017.04.061. Epub 2017 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验