Suppr超能文献

纳米装甲:多催化酶聚合物缀合物的制备策略及高温生物催化的增强

Nanoarmoring: strategies for preparation of multi-catalytic enzyme polymer conjugates and enhancement of high temperature biocatalysis.

作者信息

Zore Omkar V, Pande Paritosh, Okifo Oghenenyerovwo, Basu Ashis K, Kasi Rajeswari M, Kumar Challa V

机构信息

Department of Chemistry, University of Connecticut Storrs, CT 06269-3060, USA.

Institute of Materials Science, U-3136, University of Connecticut Storrs, CT 06269-3069, USA.

出版信息

RSC Adv. 2017;7(47):29563-29574. doi: 10.1039/c7ra05666d. Epub 2017 Jun 6.

Abstract

We report a general and modular approach for the synthesis of multi enzyme-polymer conjugates (MECs) consisting of five different enzymes of diverse isoelectric points and distinct catalytic properties conjugated within a single universal polymer scaffold. The five model enzymes chosen include glucose oxidase (GOx), acid phosphatase (AP), lactate dehydrogenase (LDH), horseradish peroxidase (HRP) and lipase (Lip). Poly(acrylic acid) (PAA) is used as the model synthetic polymer scaffold that will covalently conjugate and stabilize multiple enzymes concurrently. Parallel and sequential synthetic protocols are used to synthesise MECs, 5-P and 5-S, respectively. Also, five different single enzyme-PAA conjugates (SECs) including GOx-PAA, AP-PAA, LDH-PAA, HRP-PAA and Lip-PAA are synthesized. The composition, structure and morphology of MECs and SECs are confirmed by agarose gel electrophoresis, dynamic light scattering, circular dichroism spectroscopy and transmission electron microscopy. The bioreactor comprising MEC functions as a single biocatalyst can carry out at least five different or orthogonal catalytic reactions by virtue of the five stabilized enzymes, which has never been achieved to-date. Using activity assays relevant for each of the enzymes, for example AP, the specific activity of AP at room temperature and 7.4 pH in PB is determined and set at 100%. Interestingly, MECs 5-P and 5-S show specific activities of 1800% and 600%, respectively, compared to 100% specific activity of AP at room temperature (RT). The catalytic efficiencies of 5-P and 5-S are 1.55 × 10 and 1.68 × 10, respectively, compared to 9.11 × 10 for AP under similar RT conditions. Similarly, AP relevant catalytic activities of 5-P and 5-S at 65 °C show 100 and 300%, respectively, relative to native AP activity at RT as the native AP is catalytically inactive at 65 °C The catalytic activity trends suggest: (1) MECs show enhanced catalytic activities compared to native enzymes under similar assay conditions and (2) 5-S is better suited for high temperature biocatalysis, while both 5-S and 5-P are suitable for room temperature biocatalysis. Initial cytotoxicity results show that these MECs are non-lethal to human cells including human embryonic kidney [HEK] cells when treated with doses of 0.01 mg mL for 72 h. This cytotoxicity data is relevant for future biological applications.

摘要

我们报道了一种通用且模块化的方法,用于合成多酶聚合物缀合物(MECs),该缀合物由五种具有不同等电点和独特催化特性的不同酶组成,它们共轭在单个通用聚合物支架内。所选择的五种模型酶包括葡萄糖氧化酶(GOx)、酸性磷酸酶(AP)、乳酸脱氢酶(LDH)、辣根过氧化物酶(HRP)和脂肪酶(Lip)。聚(丙烯酸)(PAA)用作模型合成聚合物支架,它将同时共价结合并稳定多种酶。分别使用平行和顺序合成方案来合成MECs,即5-P和5-S。此外,还合成了五种不同的单酶-PAA缀合物(SECs),包括GOx-PAA、AP-PAA、LDH-PAA、HRP-PAA和Lip-PAA。通过琼脂糖凝胶电泳、动态光散射、圆二色光谱和透射电子显微镜确认了MECs和SECs的组成、结构和形态。包含MEC的生物反应器作为单一生物催化剂,凭借这五种稳定的酶可以进行至少五种不同或正交的催化反应,这是迄今为止从未实现过的。使用与每种酶相关的活性测定方法,例如AP,测定并将AP在室温及PB中pH 7.4时的比活性设定为100%。有趣的是,与室温下AP的100%比活性相比(RT),MECs 5-P和5-S的比活性分别为1800%和600%。在相似的室温条件下,5-P和5-S的催化效率分别为1.55×10和1.68×10,而AP的催化效率为9.11×10。同样,在65°C时,5-P和5-S的AP相关催化活性相对于室温下天然AP的活性分别显示为100%和300%,因为天然AP在65°C时无催化活性。催化活性趋势表明:(1)在相似的测定条件下,MECs与天然酶相比显示出增强的催化活性;(2)5-S更适合高温生物催化,而5-S和5-P都适合室温生物催化。初步细胞毒性结果表明,当以0.01 mg/mL的剂量处理72小时时,这些MECs对包括人胚肾[HEK]细胞在内的人类细胞无致死性。该细胞毒性数据与未来的生物学应用相关。

相似文献

2
Armored Enzyme-Nanohybrids and Their Catalytic Function Under Challenging Conditions.
Methods Enzymol. 2017;590:169-192. doi: 10.1016/bs.mie.2017.02.007. Epub 2017 Apr 4.
3
Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).
Bioconjug Chem. 2014 Aug 20;25(8):1501-10. doi: 10.1021/bc500233u. Epub 2014 Jul 30.
4
Protein polymer conjugates: improving the stability of hemoglobin with poly(acrylic acid).
Langmuir. 2011 Jun 21;27(12):7663-71. doi: 10.1021/la2015034. Epub 2011 May 18.
5
Efficient biocatalysis in organic media with hemoglobin and poly(acrylic acid) nanogels.
Langmuir. 2014 May 13;30(18):5176-84. doi: 10.1021/la501034b. Epub 2014 May 1.
7
Polymerization-Induced Coassembly of Enzyme-Polymer Conjugates into Comicelles with Tunable and Enhanced Cascade Activity.
Nano Lett. 2020 Feb 12;20(2):1383-1387. doi: 10.1021/acs.nanolett.9b04959. Epub 2020 Jan 9.
8
Nanoarmoring of Enzymes by Interlocking in Cellulose Fibers With Poly(Acrylic Acid).
Methods Enzymol. 2017;590:475-500. doi: 10.1016/bs.mie.2017.01.009. Epub 2017 Mar 28.
9
Horseradish peroxidase immobilized on the magnetic composite microspheres for high catalytic ability and operational stability.
Enzyme Microb Technol. 2019 Mar;122:26-35. doi: 10.1016/j.enzmictec.2018.12.007. Epub 2018 Dec 13.

引用本文的文献

1
Multimodal Enzyme-Carrying Suprastructures for Rapid and Sensitive Biocatalytic Cascade Reactions.
Adv Sci (Weinh). 2022 Apr;9(10):e2104884. doi: 10.1002/advs.202104884. Epub 2021 Dec 22.

本文引用的文献

2
A Modular Bioplatform Based on a Versatile Supramolecular Multienzyme Complex Directly Attached to Graphene.
ACS Appl Mater Interfaces. 2016 Aug 17;8(32):21077-88. doi: 10.1021/acsami.6b05453. Epub 2016 Aug 5.
3
Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis.
J Biotechnol. 2016 May 20;226:8-13. doi: 10.1016/j.jbiotec.2016.03.024. Epub 2016 Mar 21.
4
Enhancing the reactivity of bimetallic Bi/Fe(0) by citric acid for remediation of polluted water.
J Hazard Mater. 2016 Jun 5;310:135-42. doi: 10.1016/j.jhazmat.2016.02.027. Epub 2016 Feb 12.
5
Emerging pollutants and plants--Metabolic activation of diclofenac by peroxidases.
Chemosphere. 2016 Mar;146:435-41. doi: 10.1016/j.chemosphere.2015.12.059. Epub 2015 Dec 30.
7
Biological relevance of oxidative debris present in as-prepared graphene oxide.
RSC Adv. 2015 Jan 1;5(73):59364-59372. doi: 10.1039/C5RA10306A.
8
Enzymatic properties and expression patterns of five extracellular lipases of Fusarium graminearum in vitro.
Enzyme Microb Technol. 2010 May 5;46(6):479-86. doi: 10.1016/j.enzmictec.2010.02.005. Epub 2010 Feb 20.
9
Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).
Bioconjug Chem. 2014 Aug 20;25(8):1501-10. doi: 10.1021/bc500233u. Epub 2014 Jul 30.
10
Efficient biocatalysis in organic media with hemoglobin and poly(acrylic acid) nanogels.
Langmuir. 2014 May 13;30(18):5176-84. doi: 10.1021/la501034b. Epub 2014 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验