Suppr超能文献

从傅里叶变换红外光谱中选择离散频率成像的最佳特征。

Selecting optimal features from Fourier transform infrared spectroscopy for discrete-frequency imaging.

机构信息

Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA.

出版信息

Analyst. 2018 Feb 26;143(5):1147-1156. doi: 10.1039/c7an01888f.

Abstract

Tissue histology utilizing chemical and immunohistochemical labels plays an important role in biomedicine and disease diagnosis. Recent research suggests that mid-infrared (IR) spectroscopic imaging may augment histology by providing quantitative molecular information. One of the major barriers to this approach is long acquisition time using Fourier-transform infrared (FTIR) spectroscopy. Recent advances in discrete frequency sources, particularly quantum cascade lasers (QCLs), may mitigate this problem by allowing selective sampling of the absorption spectrum. However, DFIR imaging only provides a significant advantage when the number of spectral samples is minimized, requiring a priori knowledge of important spectral features. In this paper, we demonstrate the use of a GPU-based genetic algorithm (GA) using linear discriminant analysis (LDA) for DFIR feature selection. Our proposed method relies on pre-acquired broadband FTIR images for feature selection. Based on user-selected criteria for classification accuracy, our algorithm provides a minimal set of features that can be used with DFIR in a time-frame more practical for clinical diagnosis.

摘要

组织学利用化学和免疫组织化学标记物在生物医药和疾病诊断中发挥着重要作用。最近的研究表明,中红外(IR)光谱成像技术可以通过提供定量分子信息来增强组织学。该方法的主要障碍之一是傅里叶变换红外(FTIR)光谱的采集时间较长。离散频率源的最新进展,特别是量子级联激光器(QCL),通过允许选择性地对吸收光谱进行采样,可以减轻这一问题。然而,当光谱样本数量最小化时,DFIR 成像才具有显著优势,这需要事先了解重要的光谱特征。在本文中,我们展示了使用基于 GPU 的遗传算法(GA)和线性判别分析(LDA)进行 DFIR 特征选择。我们提出的方法依赖于预先获取的宽带 FTIR 图像进行特征选择。根据用户选择的分类准确性标准,我们的算法提供了一组最小的特征,可用于 DFIR 在更适合临床诊断的时间框架内进行分类。

相似文献

2
Towards Translation of Discrete Frequency Infrared Spectroscopic Imaging for Digital Histopathology of Clinical Biopsy Samples.
Anal Chem. 2016 Oct 18;88(20):10183-10190. doi: 10.1021/acs.analchem.6b02754. Epub 2016 Sep 29.
4
On the Limit of Detection in Infrared Spectroscopic Imaging.
Appl Spectrosc. 2022 Jan;76(1):105-117. doi: 10.1177/00037028211050961. Epub 2021 Oct 21.
5
Fast infrared chemical imaging with a quantum cascade laser.
Anal Chem. 2015 Jan 6;87(1):485-93. doi: 10.1021/ac5027513. Epub 2014 Dec 22.
6
Feature selection strategies for quality screening of diesel samples by infrared spectrometry and linear discriminant analysis.
Talanta. 2013 Jan 30;104:128-34. doi: 10.1016/j.talanta.2012.11.032. Epub 2012 Nov 20.
7
Unsupervised Feature Selection by a Genetic Algorithm for Mid-Infrared Spectral Data.
Anal Chem. 2022 Nov 22;94(46):16050-16059. doi: 10.1021/acs.analchem.2c03118. Epub 2022 Nov 8.
10
Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser.
Anal Chem. 2012 Dec 4;84(23):10366-72. doi: 10.1021/ac302513f. Epub 2012 Nov 19.

引用本文的文献

1
Exploring Feature Selection with Deep Learning for Kidney Tissue Microarray Classification Using Infrared Spectral Imaging.
Bioengineering (Basel). 2025 Mar 31;12(4):366. doi: 10.3390/bioengineering12040366.
2
Infrared Imaging Combined with Machine Learning for Detection of the (Pre)Invasive Pancreatic Neoplasia.
ACS Pharmacol Transl Sci. 2025 Mar 20;8(4):1096-1105. doi: 10.1021/acsptsci.4c00689. eCollection 2025 Apr 11.
5
Rapid Hyperspectral Photothermal Mid-Infrared Spectroscopic Imaging from Sparse Data for Gynecologic Cancer Tissue Subtyping.
Anal Chem. 2024 Oct 8;96(40):15880-15887. doi: 10.1021/acs.analchem.4c01093. Epub 2024 Sep 23.
7
Polarization Sensitive Photothermal Mid-Infrared Spectroscopic Imaging of Human Bone Marrow Tissue.
Appl Spectrosc. 2022 Apr;76(4):508-518. doi: 10.1177/00037028211063513. Epub 2022 Mar 2.
8
Multi-modal image sharpening in fourier transform infrared (FTIR) microscopy.
Analyst. 2021 Aug 7;146(15):4822-4834. doi: 10.1039/d1an00103e. Epub 2021 Jul 1.
9
Automated Osteosclerosis Grading of Clinical Biopsies Using Infrared Spectroscopic Imaging.
Anal Chem. 2020 Jan 7;92(1):749-757. doi: 10.1021/acs.analchem.9b03015. Epub 2019 Dec 13.
10
A comparison of mid-infrared spectral regions on accuracy of tissue classification.
Analyst. 2019 Apr 8;144(8):2635-2642. doi: 10.1039/c8an01782d.

本文引用的文献

1
Quantum Cascade Laser Spectral Histopathology: Breast Cancer Diagnostics Using High Throughput Chemical Imaging.
Anal Chem. 2017 Jul 18;89(14):7348-7355. doi: 10.1021/acs.analchem.7b00426. Epub 2017 Jul 3.
2
End-member extraction based on segmented vertex component analysis in hyperspectral images.
Appl Opt. 2017 Mar 20;56(9):2476-2482. doi: 10.1364/AO.56.002476.
4
Rapid infrared mapping for highly accurate automated histology in Barrett's oesophagus.
Analyst. 2017 Apr 10;142(8):1227-1234. doi: 10.1039/c6an01871h.
5
Fundamental developments in infrared spectroscopic imaging for biomedical applications.
Chem Soc Rev. 2016 Apr 7;45(7):1935-57. doi: 10.1039/c5cs00846h. Epub 2016 Mar 21.
7
Stain Specific Standardization of Whole-Slide Histopathological Images.
IEEE Trans Med Imaging. 2016 Feb;35(2):404-15. doi: 10.1109/TMI.2015.2476509. Epub 2015 Sep 4.
8
A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data.
Adv Bioinformatics. 2015;2015:198363. doi: 10.1155/2015/198363. Epub 2015 Jun 11.
9
Stain-less staining for computed histopathology.
Technology (Singap World Sci). 2015 Mar;3(1):27-31. doi: 10.1142/S2339547815200010.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验