Suppr超能文献

基于稀疏数据的妇科癌症组织亚型快速高光谱光热中红外光谱成像。

Rapid Hyperspectral Photothermal Mid-Infrared Spectroscopic Imaging from Sparse Data for Gynecologic Cancer Tissue Subtyping.

机构信息

Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States.

The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.

出版信息

Anal Chem. 2024 Oct 8;96(40):15880-15887. doi: 10.1021/acs.analchem.4c01093. Epub 2024 Sep 23.

Abstract

Ovarian cancer detection has traditionally relied on a multistep process that includes biopsy, tissue staining, and morphological analysis by experienced pathologists. While widely practiced, this conventional approach suffers from several drawbacks: it is qualitative, time-intensive, and heavily dependent on the quality of staining. Mid-infrared (MIR) hyperspectral photothermal imaging is a label-free, biochemically quantitative technology that, when combined with machine learning algorithms, can eliminate the need for staining and provide quantitative results comparable to traditional histology. However, this technology is slow. This work presents a novel approach to MIR photothermal imaging that enhances its speed by an order of magnitude. This method resolves the longstanding trade-off between imaging resolution and data collection speed, enabling the reconstruction of high-quality, high-resolution images from undersampled data sets and achieving a 10X improvement in data acquisition time. We assessed the performance of our sparse imaging methodology using a variety of quantitative metrics, including mean squared error (MSE), structural similarity index (SSIM), and tissue subtype classification accuracies, employing both random forest and convolutional neural network (CNN) models, accompanied by Receiver Operating Characteristic (ROC) curves. Our statistically robust analysis, based on data from 100 ovarian cancer patient samples and over 65 million data points, demonstrates the method's capability to produce superior image quality and accurately distinguish between different gynecological tissue types with segmentation accuracy exceeding 95%. Our work demonstrates the feasibility of integrating rapid MIR hyperspectral photothermal imaging with machine learning in enhancing ovarian cancer tissue characterization, paving the way for quantitative, label-free, automated histopathology.

摘要

卵巢癌的检测传统上依赖于一个多步骤的过程,包括活检、组织染色和经验丰富的病理学家进行形态学分析。虽然这种传统方法被广泛应用,但它存在几个缺点:它是定性的、耗时的,并且严重依赖于染色的质量。中红外(MIR)高光谱光热成像是一种无标记、生物化学定量技术,当与机器学习算法结合使用时,可以消除染色的需要,并提供与传统组织学相当的定量结果。然而,这种技术速度较慢。本工作提出了一种新的 MIR 光热成像方法,通过提高其速度来提高其速度。这种方法解决了成像分辨率和数据采集速度之间长期存在的权衡问题,能够从欠采样数据集重建高质量、高分辨率的图像,并将数据采集时间提高 10 倍。我们使用各种定量指标,包括均方误差(MSE)、结构相似性指数(SSIM)和组织亚型分类准确率,评估了我们的稀疏成像方法的性能,使用随机森林和卷积神经网络(CNN)模型,并结合了接收者操作特征(ROC)曲线。我们基于来自 100 名卵巢癌患者样本和超过 6500 万个数据点的数据进行了统计稳健分析,证明了该方法能够产生更高质量的图像,并通过分割准确率超过 95%来准确区分不同的妇科组织类型。我们的工作证明了将快速 MIR 高光谱光热成像与机器学习相结合用于增强卵巢癌组织特征描述的可行性,为定量、无标记、自动化组织病理学铺平了道路。

相似文献

1
Rapid Hyperspectral Photothermal Mid-Infrared Spectroscopic Imaging from Sparse Data for Gynecologic Cancer Tissue Subtyping.
Anal Chem. 2024 Oct 8;96(40):15880-15887. doi: 10.1021/acs.analchem.4c01093. Epub 2024 Sep 23.
6
Characterizing Breast Tumor Heterogeneity Through IVIM-DWI Parameters and Signal Decay Analysis.
Diagnostics (Basel). 2025 Jun 12;15(12):1499. doi: 10.3390/diagnostics15121499.
9
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.
Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025.
10
Intraoperative frozen section analysis for the diagnosis of early stage ovarian cancer in suspicious pelvic masses.
Cochrane Database Syst Rev. 2016 Mar 1;3(3):CD010360. doi: 10.1002/14651858.CD010360.pub2.

引用本文的文献

1
Quantification of Protein Secondary Structures from Discrete Frequency Infrared Images Using Machine Learning.
Appl Spectrosc. 2025 Mar 31:37028251325553. doi: 10.1177/00037028251325553.
2
Cervical Cancer Tissue Analysis Using Photothermal Midinfrared Spectroscopic Imaging.
Chem Biomed Imaging. 2024 Jul 31;2(9):651-658. doi: 10.1021/cbmi.4c00031. eCollection 2024 Sep 23.

本文引用的文献

1
Current status of yttrium-90 microspheres radioembolization in primary and metastatic liver cancer.
J Interv Med. 2023 Sep 19;6(4):153-159. doi: 10.1016/j.jimed.2023.09.001. eCollection 2023 Nov.
2
Single-cell mapping of lipid metabolites using an infrared probe in human-derived model systems.
Nat Commun. 2024 Jan 8;15(1):350. doi: 10.1038/s41467-023-44675-0.
3
Infrared spectroscopic laser scanning confocal microscopy for whole-slide chemical imaging.
Nat Commun. 2023 Aug 25;14(1):5215. doi: 10.1038/s41467-023-40740-w.
4
Microcalcification crystallography as a potential marker of DCIS recurrence.
Sci Rep. 2023 Jun 8;13(1):9331. doi: 10.1038/s41598-023-33547-8.
6
Mid-Infrared Photothermal Microscopy: Principle, Instrumentation, and Applications.
J Phys Chem B. 2022 Nov 3;126(43):8597-8613. doi: 10.1021/acs.jpcb.2c05827. Epub 2022 Oct 26.
7
Polarization Sensitive Photothermal Mid-Infrared Spectroscopic Imaging of Human Bone Marrow Tissue.
Appl Spectrosc. 2022 Apr;76(4):508-518. doi: 10.1177/00037028211063513. Epub 2022 Mar 2.
8
Multi-modal image sharpening in fourier transform infrared (FTIR) microscopy.
Analyst. 2021 Aug 7;146(15):4822-4834. doi: 10.1039/d1an00103e. Epub 2021 Jul 1.
9
Bond-selective imaging by optically sensing the mid-infrared photothermal effect.
Sci Adv. 2021 May 14;7(20). doi: 10.1126/sciadv.abg1559. Print 2021 May.
10
Applications of Vibrational Spectroscopy for Analysis of Connective Tissues.
Molecules. 2021 Feb 9;26(4):922. doi: 10.3390/molecules26040922.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验