Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA.
Nanoscale. 2018 Feb 15;10(7):3469-3479. doi: 10.1039/c7nr07642h.
Tungsten oxide (WO) nanostructures with hexagonal in-plane arrangements were fabricated by sequential infiltration synthesis (SIS), using the selective interaction of gas phase precursors with functional groups in one domain of a block copolymer (BCP) self-assembled template. Such structures are highly desirable for various practical applications and as model systems for fundamental studies. The nanostructures were characterized by cross-sectional scanning electron microscopy, grazing-incidence small/wide-angle X-ray scattering (GISAXS/GIWAXS), and X-ray absorption near edge structure (XANES) measurements at each stage during the SIS process and subsequent thermal treatments, to provide a comprehensive picture of their evolution in morphology, crystallography and electronic structure. In particular, we discuss the critical role of SIS AlO seeds toward modifying the chemical affinity and free volume in a polymer for subsequent infiltration of gas phase precursors. The insights into SIS growth obtained from this study are valuable to the design and fabrication of a wide range of targeted nanostructures.
采用顺序浸润合成(SIS)方法,通过气相前体与嵌段共聚物(BCP)自组装模板中一个域的官能团的选择性相互作用,制备出具有面内六方排列的氧化钨(WO)纳米结构。这些结构在各种实际应用中非常理想,并且是基础研究的模型系统。通过在 SIS 过程的各个阶段以及随后的热处理过程中的横截面扫描电子显微镜、掠入射小/广角 X 射线散射(GISAXS/GIWAXS)和 X 射线吸收近边结构(XANES)测量对纳米结构进行了表征,提供了对其在形态、结晶学和电子结构方面的演变的全面了解。特别是,我们讨论了 SIS AlO 种子在改变聚合物中的化学亲和力和自由体积以随后渗透气相前体方面的关键作用。本研究中获得的关于 SIS 生长的见解对于设计和制造各种目标纳米结构具有重要价值。