Suppr超能文献

阑尾切除术护理的可视化决策支持工具。

A Visual Decision Support Tool for Appendectomy Care.

机构信息

Electro-Optical Systems Lab, Georgia Tech Research Institute, 925 Dalney St., Atlanta, GA, 30332-0834, USA.

Division of Pediatric Surgery, Department of Surgery, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.

出版信息

J Med Syst. 2018 Feb 5;42(3):52. doi: 10.1007/s10916-018-0906-9.

Abstract

Appendectomy is the most common abdominal surgical procedure performed in children in the United States. In order to assist care providers in creating treatment plans for the postoperative management of pediatric appendicitis, we have developed a predictive statistical model of outcomes on which we have built a prototype decision aid application. The model, trained on 3724 anonymized care records and evaluated on a separate set of 2205 cases from a tertiary care center, achieves 97.0% specificity, 25.1% true sensitivity, and 58.8% precision. We have also built an interactive decision support tool augmented with simple visualization techniques designed for clinicians to use in the course of making care decisions (e.g., discharge) and in patient/stakeholder communication. Its focus is on end-user ease of use and integration into existing clinician workflows, and is designed to evolve its predictions as more and better data become available.

摘要

阑尾切除术是美国儿童最常见的腹部外科手术。为了帮助医疗保健提供者制定小儿阑尾炎术后管理的治疗计划,我们开发了一种预测统计模型,我们在此基础上构建了一个原型决策辅助应用程序。该模型在 3724 份匿名护理记录上进行训练,并在来自三级护理中心的 2205 例独立病例集上进行评估,特异性为 97.0%,真阳性率为 25.1%,精确度为 58.8%。我们还构建了一个交互式决策支持工具,该工具使用了简单的可视化技术,旨在为临床医生在做出护理决策(例如出院)和与患者/利益相关者沟通时使用。它的重点是用户友好性和与现有临床医生工作流程的集成,并旨在随着更多更好的数据的出现,不断改进其预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验