International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, India.
Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
BMC Plant Biol. 2018 Feb 6;18(1):29. doi: 10.1186/s12870-018-1245-1.
Terminal drought stress leads to substantial annual yield losses in chickpea (Cicer arietinum L.). Adaptation to water limitation is a matter of matching water supply to water demand by the crop. Therefore, harnessing the genetics of traits contributing to plant water use, i.e. transpiration rate and canopy development dynamics, is important to design crop ideotypes suited to a varying range of water limited environments. With an aim of identifying genomic regions for plant vigour (growth and canopy size) and canopy conductance traits, 232 recombinant inbred lines derived from a cross between ICC 4958 and ICC 1882, were phenotyped at vegetative stage under well-watered conditions using a high throughput phenotyping platform (LeasyScan).
Twenty one major quantitative trait loci (M-QTLs) were identified for plant vigour and canopy conductance traits using an ultra-high density bin map. Plant vigour traits had 13 M-QTLs on CaLG04, with favourable alleles from high vigour parent ICC 4958. Most of them co-mapped with a previously fine mapped major drought tolerance "QTL-hotspot" region on CaLG04. One M-QTL was found for canopy conductance on CaLG03 with the ultra-high density bin map. Comparative analysis of the QTLs found across different density genetic maps revealed that QTL size reduced considerably and % of phenotypic variation increased as marker density increased.
Earlier reported drought tolerance hotspot is a vigour locus. The fact that canopy conductance traits, i.e. the other important determinant of plant water use, mapped on CaLG03 provides an opportunity to manipulate these loci to tailor recombinants having low/high transpiration rate and plant vigour, fitted to specific drought stress scenarios in chickpea.
终端干旱胁迫导致鹰嘴豆(Cicer arietinum L.)每年的产量损失巨大。适应水分限制是通过作物供水与需水相匹配来实现的。因此,利用与植物水分利用相关性状的遗传特性,即蒸腾速率和冠层发育动态,对于设计适应不同水分限制环境的作物理想型是很重要的。为了鉴定与植物活力(生长和冠层大小)和冠层导度性状相关的基因组区域,利用高通量表型平台(LeasyScan),在充分供水条件下对源自 ICC 4958 和 ICC 1882 杂交的 232 个重组自交系进行了表型分析。
利用超高密度 bin 图谱,为植物活力和冠层导度性状鉴定出 21 个主要数量性状位点(M-QTLs)。植物活力性状在 CaLG04 上有 13 个 M-QTLs,来自高活力亲本 ICC 4958 的有利等位基因。其中大多数与 CaLG04 上先前精细定位的主要耐旱性“QTL 热点”区域共定位。在 CaLG03 上发现了一个与冠层导度相关的 M-QTL,使用超高密度 bin 图谱。对不同密度遗传图谱上发现的 QTL 进行比较分析表明,随着标记密度的增加,QTL 大小显著减小,表型变异的百分比增加。
先前报道的耐旱性热点是一个活力位点。冠层导度性状,即植物水分利用的另一个重要决定因素,在 CaLG03 上定位,为操纵这些位点提供了机会,从而使重组体具有低/高蒸腾速率和植物活力,适应鹰嘴豆特定的干旱胁迫情景。