文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一个用于剖析复杂性状遗传机制的鹰嘴豆多亲本高级世代互交群体。

A chickpea MAGIC population to dissect the genetics of complex traits.

作者信息

Akinlade Oluwaseun J, Robinson Hannah, Kang Yichen, Thudi Mahendar, Samineni Srinivasan, Gaur Pooran, Smith Millicent R, Voss-Fels Kai P, Costilla Roy, Varshney Rajeev K, Dinglasan Eric, Hickey Lee T

机构信息

Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.

State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.

出版信息

Plant Genome. 2025 Sep;18(3):e70096. doi: 10.1002/tpg2.70096.


DOI:10.1002/tpg2.70096
PMID:40851216
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12375853/
Abstract

Multiparent populations are now widespread in crop genetic studies as they capture more genetic diversity and offer high statistical power for detecting quantitative trait loci (QTLs). To confirm the suitability of using a recently developed chickpea (Cicer arietinum L.) multi-parent advanced generation intercross (MAGIC) population for genetic studies, we characterized the diversity of the eight founder lines and explored the linkage disequilibrium decay, marker coverage, segregation distortion, allelic variation, and structure of the population. The MAGIC population was genotyped using whole-genome sequencing; following marker curation, a total of 4255 high-quality polymorphic single nucleotide polymorphism markers were used for genomic analyses. To demonstrate the effectiveness of the MAGIC population to dissect the genetics of key agronomic traits (days to 50% flowering and plant height), we employed both a genome-wide mapping approach using fixed and random model circulating probability unification and a haplotype-based mapping using the local genomic estimated breeding value approach. Our analyses confirmed the role of genomic regions previously reported in the literature and identified several new QTLs for days to 50% flowering and plant height. We also showed the potential for trait improvement through stacking the top 10 haploblocks to develop early flowering chickpea and selection of desirable haplotypes on chromosome 4 to improve plant height. Our results demonstrate the chickpea MAGIC population is a valuable resource for researchers and pre-breeders to study the genetic architecture of complex traits and allelic variation to accelerate crop improvement in chickpea.

摘要

多亲群体目前在作物遗传研究中广泛应用,因为它们能捕获更多的遗传多样性,并为检测数量性状基因座(QTL)提供强大的统计功效。为了确认最近开发的鹰嘴豆(Cicer arietinum L.)多亲高代杂交(MAGIC)群体用于遗传研究的适用性,我们对八个亲本系的多样性进行了表征,并探索了连锁不平衡衰退、标记覆盖范围、分离畸变、等位基因变异和群体结构。使用全基因组测序对MAGIC群体进行基因分型;经过标记筛选后,共4255个高质量的多态性单核苷酸多态性标记用于基因组分析。为了证明MAGIC群体在剖析关键农艺性状(50%开花天数和株高)遗传方面的有效性,我们采用了基于固定和随机模型循环概率统一的全基因组定位方法以及基于单倍型的局部基因组估计育种值定位方法。我们的分析证实了文献中先前报道的基因组区域的作用,并鉴定了几个与50%开花天数和株高相关的新QTL。我们还展示了通过堆叠前10个单倍型块来培育早花鹰嘴豆以及在4号染色体上选择理想单倍型来提高株高从而改良性状的潜力。我们的结果表明,鹰嘴豆MAGIC群体是研究人员和育种前人员研究复杂性状遗传结构和等位基因变异以加速鹰嘴豆作物改良的宝贵资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/8c4d05739a36/TPG2-18-e70096-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/5bfb070e061e/TPG2-18-e70096-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/28d28d556082/TPG2-18-e70096-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/2c11acd2f20a/TPG2-18-e70096-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/17805777eaea/TPG2-18-e70096-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/db0e05d2ab6f/TPG2-18-e70096-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/07491975fd72/TPG2-18-e70096-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/7c45c7a14f28/TPG2-18-e70096-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/31e746f2b4bf/TPG2-18-e70096-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/8c4d05739a36/TPG2-18-e70096-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/5bfb070e061e/TPG2-18-e70096-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/28d28d556082/TPG2-18-e70096-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/2c11acd2f20a/TPG2-18-e70096-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/17805777eaea/TPG2-18-e70096-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/db0e05d2ab6f/TPG2-18-e70096-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/07491975fd72/TPG2-18-e70096-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/7c45c7a14f28/TPG2-18-e70096-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/31e746f2b4bf/TPG2-18-e70096-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/12375853/8c4d05739a36/TPG2-18-e70096-g009.jpg

相似文献

[1]
A chickpea MAGIC population to dissect the genetics of complex traits.

Plant Genome. 2025-9

[2]
An Australian chickpea pan-genome provides insights into genome organization and offers opportunities for enhancing drought adaptation for crop improvement.

Plant Biotechnol J. 2025-6-18

[3]
Chromosome-level haplotype-resolved genome assembly provides insights into the highly heterozygous genome of Italian ryegrass (Lolium multiflorum Lam.).

Plant Genome. 2025-9

[4]
TEA5K: a high-resolution and liquid-phase multiple-SNP array for molecular breeding in tea plant.

J Nanobiotechnology. 2025-7-2

[5]
Chickpea (Cicer arietinum L.) battling against heat stress: plant breeding and genomics advances.

Plant Mol Biol. 2025-7-31

[6]
Heritability estimates and genome-wide association study of methane emission traits in Nellore cattle.

J Anim Sci. 2024-1-3

[7]
Genetic determinants of testicular sperm extraction outcomes: insights from a large multicentre study of men with non-obstructive azoospermia.

Hum Reprod Open. 2025-8-29

[8]
Haplotype-based insights into seminal root angle in barley.

Plant Genome. 2025-9

[9]
Gene expression and expression quantitative trait loci analyses uncover natural variations underlying the improvement of important agronomic traits during modern maize breeding.

Plant J. 2023-8

[10]
Prescription of Controlled Substances: Benefits and Risks

2025-1

本文引用的文献

[1]
Characterizing stay-green in barley across diverse environments: unveiling novel haplotypes.

Theor Appl Genet. 2024-5-6

[2]
Whole genome resequencing and phenotyping of MAGIC population for high resolution mapping of drought tolerance in chickpea.

Plant Genome. 2024-3

[3]
SoyMAGIC: An Unprecedented Platform for Genetic Studies and Breeding Activities in Soybean.

Front Plant Sci. 2022-7-7

[4]
Genome-Wide Association Analyses Track Genomic Regions for Resistance to in Australian Chickpea Breeding Germplasm.

Front Plant Sci. 2022-5-18

[5]
A chickpea genetic variation map based on the sequencing of 3,366 genomes.

Nature. 2021-11

[6]
The genetics of vigour-related traits in chickpea (Cicer arietinum L.): insights from genomic data.

Theor Appl Genet. 2022-1

[7]
GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction.

Genomics Proteomics Bioinformatics. 2021-8

[8]
Major QTLs and Potential Candidate Genes for Heat Stress Tolerance Identified in Chickpea ( L.).

Front Plant Sci. 2021-7-26

[9]
Linkage disequilibrium patterns, population structure and diversity analysis in a worldwide durum wheat collection including Argentinian genotypes.

BMC Genomics. 2021-4-5

[10]
Twelve years of SAMtools and BCFtools.

Gigascience. 2021-2-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索