Suppr超能文献

[成像中的大数据]

[Big data in imaging].

作者信息

Sewerin Philipp, Ostendorf Benedikt, Hueber Axel J, Kleyer Arnd

机构信息

Heinrich-Heine-Universität Düsseldorf (HHU), Poliklinik, Funktionsbereich und Hiller-Forschungszentrum für Rheumatologie, Universitätskliniken Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Deutschland.

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Medizinische Klinik 3 - Rheumatologie und Immunologie, Universitätsklinikum Erlangen, Erlangen, Deutschland.

出版信息

Z Rheumatol. 2018 Apr;77(3):203-208. doi: 10.1007/s00393-018-0422-9.

Abstract

Until now, most major medical advancements have been achieved through hypothesis-driven research within the scope of clinical trials. However, due to a multitude of variables, only a certain number of research questions could be addressed during a single study, thus rendering these studies expensive and time consuming. Big data acquisition enables a new data-based approach in which large volumes of data can be used to investigate all variables, thus opening new horizons. Due to universal digitalization of the data as well as ever-improving hard- and software solutions, imaging would appear to be predestined for such analyses. Several small studies have already demonstrated that automated analysis algorithms and artificial intelligence can identify pathologies with high precision. Such automated systems would also seem well suited for rheumatology imaging, since a method for individualized risk stratification has long been sought for these patients. However, despite all the promising options, the heterogeneity of the data and highly complex regulations covering data protection in Germany would still render a big data solution for imaging difficult today. Overcoming these boundaries is challenging, but the enormous potential advances in clinical management and science render pursuit of this goal worthwhile.

摘要

到目前为止,大多数重大医学进展都是通过临床试验范围内基于假设的研究取得的。然而,由于变量众多,在一项单一研究中只能解决一定数量的研究问题,因此这些研究既昂贵又耗时。大数据采集实现了一种新的基于数据的方法,在这种方法中,可以使用大量数据来研究所有变量,从而开辟了新的视野。由于数据的普遍数字化以及不断改进的硬件和软件解决方案,成像似乎注定要用于此类分析。几项小型研究已经证明,自动分析算法和人工智能能够高精度地识别病变。这样的自动化系统似乎也非常适合风湿病成像,因为长期以来一直在为这些患者寻找个性化风险分层的方法。然而,尽管有所有这些有前景的选择,但数据的异质性以及德国涵盖数据保护的高度复杂法规,如今仍会使成像的大数据解决方案变得困难。克服这些障碍具有挑战性,但临床管理和科学方面的巨大潜在进展使追求这一目标是值得的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验