Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, United States.
Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, United States.
Curr Opin Neurobiol. 2018 Apr;49:75-83. doi: 10.1016/j.conb.2018.01.002. Epub 2018 Feb 4.
In the mammalian neocortex, an area typically receives inputs from, and projects to, dozens of other areas. Mechanisms are needed to flexibly route information to the right place at the right time, which we term 'pathway gating'. For instance, a region in your brain that receives signals from both visual and auditory pathways may want to 'gate in' the visual pathway while 'gating out' the auditory pathway when you try to read a book surrounded by people in a noisy café. In this review, we marshall experimental and computational evidence in support of a circuit mechanism for flexible pathway gating realized by a disinhibitory motif. Moreover, recent work shows an increasing preponderance of this disinhibitory motif from sensory areas to association areas of the mammalian cortex. Pathway input gating is briefly compared with alternative or complementary gating mechanisms. Predictions and open questions for future research on this puzzle about the complex brain system will be discussed.
在哺乳动物的新皮层中,一个区域通常接收来自数十个其他区域的输入,并投射到数十个其他区域。需要有机制来灵活地将信息在正确的时间路由到正确的位置,我们称之为“通路门控”。例如,当你在嘈杂的咖啡馆里试图阅读一本书时,你大脑中同时接收来自视觉和听觉通路信号的区域可能希望“打开”视觉通路,同时“关闭”听觉通路。在这篇综述中,我们汇集了实验和计算证据,支持通过一种抑制解除模式来实现灵活的通路门控的电路机制。此外,最近的工作表明,这种抑制解除模式在哺乳动物皮层的感觉区到联合区的比例越来越大。通路输入门控与替代或互补的门控机制进行了简要比较。对这个关于复杂大脑系统的难题的未来研究的预测和开放性问题进行了讨论。