Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503.
Department of Microbiology, New York University School of Medicine, New York, New York 10016.
J Biol Chem. 2018 Mar 30;293(13):4713-4723. doi: 10.1074/jbc.RA117.001471. Epub 2018 Feb 5.
In all domains of life, proteasomes are gated, chambered proteases that require opening by activators to facilitate protein degradation. Twelve proteasome accessory factor E (PafE) monomers assemble into a single dodecameric ring that promotes proteolysis required for the full virulence of the human bacterial pathogen Whereas the best characterized proteasome activators use ATP to deliver proteins into a proteasome, PafE does not require ATP. Here, to unravel the mechanism of PafE-mediated protein targeting and proteasome activation, we studied the interactions of PafE with native substrates, including a newly identified proteasome substrate, the ParA-like protein, Rv3213c, and with proteasome core particles. We characterized the function of a highly conserved feature in bacterial proteasome activator proteins: a glycine-glutamine-tyrosine-leucine (GQYL) motif at their C termini that is essential for stimulating proteolysis. Using cryo-electron microscopy (cryo-EM), we found that the GQYL motif of PafE interacts with specific residues in the α subunits of the proteasome core particle to trigger gate opening and degradation. Finally, we also found that PafE rings have 40-Å openings lined with hydrophobic residues that form a chamber for capturing substrates before they are degraded, suggesting PafE has a previously unrecognized chaperone activity. In summary, we have identified the interactions between PafE and the proteasome core particle that cause conformational changes leading to the opening of the proteasome gate and have uncovered a mechanism of PafE-mediated substrate degradation. Collectively, our results provide detailed insights into the mechanism of ATP-independent proteasome degradation in bacteria.
在所有生命领域中,蛋白酶体都是有门控的、有腔室的蛋白酶,需要通过激活剂打开才能促进蛋白质降解。十二个蛋白酶体辅助因子 E(PafE)单体组装成一个单一的十二聚体环,促进了细菌病原体全毒力所需的蛋白质降解。虽然研究最深入的蛋白酶体激活剂使用 ATP 将蛋白质递送到蛋白酶体中,但 PafE 不需要 ATP。在这里,为了解开 PafE 介导的蛋白质靶向和蛋白酶体激活的机制,我们研究了 PafE 与天然底物的相互作用,包括新鉴定的蛋白酶体底物、ParA 样蛋白 Rv3213c 以及与蛋白酶体核心颗粒的相互作用。我们表征了细菌蛋白酶体激活蛋白中一个高度保守特征的功能:其 C 末端的甘氨酸-谷氨酰胺-酪氨酸-亮氨酸(GQYL)基序对于刺激蛋白水解至关重要。使用冷冻电镜(cryo-EM),我们发现 PafE 的 GQYL 基序与蛋白酶体核心颗粒的 α 亚基中的特定残基相互作用,触发门控打开和降解。最后,我们还发现 PafE 环有 40-Å 的开口,边缘有疏水性残基,形成一个腔室,用于在降解之前捕获底物,这表明 PafE 具有以前未被识别的伴侣活性。总之,我们已经确定了 PafE 与蛋白酶体核心颗粒之间的相互作用,这些相互作用导致构象变化,从而打开蛋白酶体门,并揭示了 PafE 介导的底物降解的机制。总的来说,我们的研究结果为细菌中 ATP 非依赖性蛋白酶体降解的机制提供了详细的见解。