Mackin Charles, McVay Elaine, Palacios Tomás
Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Sensors (Basel). 2018 Feb 7;18(2):494. doi: 10.3390/s18020494.
This work develops the first frequency-dependent small-signal model for graphene electrolyte-gated field-effect transistors (EGFETs). Graphene EGFETs are microfabricated to measure intrinsic voltage gain, frequency response, and to develop a frequency-dependent small-signal model. The transfer function of the graphene EGFET small-signal model is found to contain a unique pole due to a resistive element, which stems from electrolyte gating. Intrinsic voltage gain, cutoff frequency, and transition frequency for the microfabricated graphene EGFETs are approximately 3.1 V/V, 1.9 kHz, and 6.9 kHz, respectively. This work marks a critical step in the development of high-speed chemical and biological sensors using graphene EGFETs.
这项工作开发了首个用于石墨烯电解质栅极场效应晶体管(EGFET)的频率相关小信号模型。通过微加工制造石墨烯EGFET,以测量其本征电压增益、频率响应,并开发一个频率相关小信号模型。发现石墨烯EGFET小信号模型的传递函数由于一个电阻元件而包含一个独特的极点,该电阻元件源于电解质栅极。微加工的石墨烯EGFET的本征电压增益、截止频率和转折频率分别约为3.1 V/V、1.9 kHz和6.9 kHz。这项工作标志着使用石墨烯EGFET开发高速化学和生物传感器的关键一步。