Suppr超能文献

集成电解栅极且尺寸缩放到200毫米的石墨烯场效应晶体管阵列。

Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm.

作者信息

Vieira N C S, Borme J, Machado G, Cerqueira F, Freitas P P, Zucolotto V, Peres N M R, Alpuim P

机构信息

INL-International Iberian Nanotechnology Laboratory, 4715-330, Braga, Portugal. IFSC-São Carlos Institute of Physics, University of São Paulo, 13560-970, São Carlos-SP, Brazil.

出版信息

J Phys Condens Matter. 2016 Mar 2;28(8):085302. doi: 10.1088/0953-8984/28/8/085302. Epub 2016 Feb 2.

Abstract

Ten years have passed since the beginning of graphene research. In this period we have witnessed breakthroughs both in fundamental and applied research. However, the development of graphene devices for mass production has not yet reached the same level of progress. The architecture of graphene field-effect transistors (FET) has not significantly changed, and the integration of devices at the wafer scale has generally not been sought. Currently, whenever an electrolyte-gated FET (EGFET) is used, an external, cumbersome, out-of-plane gate electrode is required. Here, an alternative architecture for graphene EGFET is presented. In this architecture, source, drain, and gate are in the same plane, eliminating the need for an external gate electrode and the use of an additional reservoir to confine the electrolyte inside the transistor active zone. This planar structure with an integrated gate allows for wafer-scale fabrication of high-performance graphene EGFETs, with carrier mobility up to 1800 cm(2) V(-1) s(-1). As a proof-of principle, a chemical sensor was achieved. It is shown that the sensor can discriminate between saline solutions of different concentrations. The proposed architecture will facilitate the mass production of graphene sensors, materializing the potential of previous achievements in fundamental and applied graphene research.

摘要

自石墨烯研究开始以来,已经过去了十年。在此期间,我们见证了基础研究和应用研究方面的突破。然而,用于大规模生产的石墨烯器件的发展尚未达到同样的进展水平。石墨烯场效应晶体管(FET)的架构没有显著变化,并且通常没有寻求在晶圆规模上集成器件。目前,每当使用电解质栅极FET(EGFET)时,都需要一个外部的、笨重的面外栅电极。在此,提出了一种用于石墨烯EGFET的替代架构。在这种架构中,源极、漏极和栅极位于同一平面内,无需外部栅电极,也无需使用额外的储液器来将电解质限制在晶体管有源区内。这种具有集成栅极的平面结构允许大规模制造高性能石墨烯EGFET,载流子迁移率高达1800 cm² V⁻¹ s⁻¹。作为原理验证,实现了一种化学传感器。结果表明,该传感器能够区分不同浓度的盐溶液。所提出的架构将有助于石墨烯传感器的大规模生产,实现先前在石墨烯基础研究和应用研究中取得成果的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验