Suppr超能文献

基于3D深度学习级联框架从MRI中分割颅颌面骨结构

Segmentation of Craniomaxillofacial Bony Structures from MRI with a 3D Deep-Learning Based Cascade Framework.

作者信息

Nie Dong, Wang Li, Trullo Roger, Li Jianfu, Yuan Peng, Xia James, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.

Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, USA.

出版信息

Mach Learn Med Imaging. 2017;10541:266-273. doi: 10.1007/978-3-319-67389-9_31. Epub 2017 Sep 7.

Abstract

Computed tomography (CT) is commonly used as a diagnostic and treatment planning imaging modality in craniomaxillofacial (CMF) surgery to correct patient's bony defects. A major disadvantage of CT is that it emits harmful ionizing radiation to patients during the exam. Magnetic resonance imaging (MRI) is considered to be much safer and noninvasive, and often used to study CMF soft tissues (e.g., temporomandibular joint and brain). However, it is extremely difficult to accurately segment CMF bony structures from MRI since both bone and air appear to be black in MRI, along with low signal-to-noise ratio and partial volume effect. To this end, we proposed a 3D deep-learning based cascade framework to solve these issues. Specifically, a 3D fully convolutional network (FCN) architecture is first adopted to coarsely segment the bony structures. As the coarsely segmented bony structures by FCN tend to be thicker, convolutional neural network (CNN) is further utilized for fine-grained segmentation. To enhance the discriminative ability of the CNN, we particularly concatenate the predicted probability maps from FCN and the original MRI, and feed them together into the CNN to provide more context information for segmentation. Experimental results demonstrate a good performance and also the clinical feasibility of our proposed 3D deep-learning based cascade framework.

摘要

计算机断层扫描(CT)在颅颌面(CMF)外科手术中通常用作诊断和治疗计划的成像方式,以矫正患者的骨缺损。CT的一个主要缺点是在检查过程中会向患者发射有害的电离辐射。磁共振成像(MRI)被认为要安全得多且是非侵入性的,常用于研究CMF软组织(例如颞下颌关节和大脑)。然而,从MRI中准确分割CMF骨结构极其困难,因为在MRI中骨和空气看起来都是黑色的,同时还存在低信噪比和部分容积效应。为此,我们提出了一种基于3D深度学习的级联框架来解决这些问题。具体而言,首先采用3D全卷积网络(FCN)架构对骨结构进行粗分割。由于FCN粗分割的骨结构往往较厚,因此进一步利用卷积神经网络(CNN)进行细粒度分割。为了增强CNN的判别能力,我们特别将FCN预测的概率图与原始MRI连接起来,并将它们一起输入到CNN中,为分割提供更多的上下文信息。实验结果证明了我们提出的基于3D深度学习的级联框架具有良好的性能以及临床可行性。

相似文献

2
Craniomaxillofacial Bony Structures Segmentation from MRI with Deep-Supervision Adversarial Learning.基于深度监督对抗学习的MRI颅颌面骨结构分割
Med Image Comput Comput Assist Interv. 2018 Sep;11073:720-727. doi: 10.1007/978-3-030-00937-3_82. Epub 2018 Sep 13.
5
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.使用3D全卷积网络从MRI数据估计CT图像。
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.
7
Abdominal artery segmentation method from CT volumes using fully convolutional neural network.基于全卷积神经网络的 CT 容积腹部动脉分割方法
Int J Comput Assist Radiol Surg. 2019 Dec;14(12):2069-2081. doi: 10.1007/s11548-019-02062-5. Epub 2019 Sep 6.

引用本文的文献

7
Craniomaxillofacial Bony Structures Segmentation from MRI with Deep-Supervision Adversarial Learning.基于深度监督对抗学习的MRI颅颌面骨结构分割
Med Image Comput Comput Assist Interv. 2018 Sep;11073:720-727. doi: 10.1007/978-3-030-00937-3_82. Epub 2018 Sep 13.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验