Suppr超能文献

基于3D深度学习级联框架从MRI中分割颅颌面骨结构

Segmentation of Craniomaxillofacial Bony Structures from MRI with a 3D Deep-Learning Based Cascade Framework.

作者信息

Nie Dong, Wang Li, Trullo Roger, Li Jianfu, Yuan Peng, Xia James, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.

Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, USA.

出版信息

Mach Learn Med Imaging. 2017;10541:266-273. doi: 10.1007/978-3-319-67389-9_31. Epub 2017 Sep 7.

Abstract

Computed tomography (CT) is commonly used as a diagnostic and treatment planning imaging modality in craniomaxillofacial (CMF) surgery to correct patient's bony defects. A major disadvantage of CT is that it emits harmful ionizing radiation to patients during the exam. Magnetic resonance imaging (MRI) is considered to be much safer and noninvasive, and often used to study CMF soft tissues (e.g., temporomandibular joint and brain). However, it is extremely difficult to accurately segment CMF bony structures from MRI since both bone and air appear to be black in MRI, along with low signal-to-noise ratio and partial volume effect. To this end, we proposed a 3D deep-learning based cascade framework to solve these issues. Specifically, a 3D fully convolutional network (FCN) architecture is first adopted to coarsely segment the bony structures. As the coarsely segmented bony structures by FCN tend to be thicker, convolutional neural network (CNN) is further utilized for fine-grained segmentation. To enhance the discriminative ability of the CNN, we particularly concatenate the predicted probability maps from FCN and the original MRI, and feed them together into the CNN to provide more context information for segmentation. Experimental results demonstrate a good performance and also the clinical feasibility of our proposed 3D deep-learning based cascade framework.

摘要

计算机断层扫描(CT)在颅颌面(CMF)外科手术中通常用作诊断和治疗计划的成像方式,以矫正患者的骨缺损。CT的一个主要缺点是在检查过程中会向患者发射有害的电离辐射。磁共振成像(MRI)被认为要安全得多且是非侵入性的,常用于研究CMF软组织(例如颞下颌关节和大脑)。然而,从MRI中准确分割CMF骨结构极其困难,因为在MRI中骨和空气看起来都是黑色的,同时还存在低信噪比和部分容积效应。为此,我们提出了一种基于3D深度学习的级联框架来解决这些问题。具体而言,首先采用3D全卷积网络(FCN)架构对骨结构进行粗分割。由于FCN粗分割的骨结构往往较厚,因此进一步利用卷积神经网络(CNN)进行细粒度分割。为了增强CNN的判别能力,我们特别将FCN预测的概率图与原始MRI连接起来,并将它们一起输入到CNN中,为分割提供更多的上下文信息。实验结果证明了我们提出的基于3D深度学习的级联框架具有良好的性能以及临床可行性。

相似文献

1
Segmentation of Craniomaxillofacial Bony Structures from MRI with a 3D Deep-Learning Based Cascade Framework.
Mach Learn Med Imaging. 2017;10541:266-273. doi: 10.1007/978-3-319-67389-9_31. Epub 2017 Sep 7.
2
Craniomaxillofacial Bony Structures Segmentation from MRI with Deep-Supervision Adversarial Learning.
Med Image Comput Comput Assist Interv. 2018 Sep;11073:720-727. doi: 10.1007/978-3-030-00937-3_82. Epub 2018 Sep 13.
3
Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization.
Med Image Anal. 2020 Feb;60:101621. doi: 10.1016/j.media.2019.101621. Epub 2019 Nov 23.
4
One-Shot Generative Adversarial Learning for MRI Segmentation of Craniomaxillofacial Bony Structures.
IEEE Trans Med Imaging. 2020 Mar;39(3):787-796. doi: 10.1109/TMI.2019.2935409. Epub 2019 Aug 14.
5
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.
6
A skeleton context-aware 3D fully convolutional network for abdominal artery segmentation.
Int J Comput Assist Radiol Surg. 2023 Mar;18(3):461-472. doi: 10.1007/s11548-022-02767-0. Epub 2022 Oct 22.
7
Abdominal artery segmentation method from CT volumes using fully convolutional neural network.
Int J Comput Assist Radiol Surg. 2019 Dec;14(12):2069-2081. doi: 10.1007/s11548-019-02062-5. Epub 2019 Sep 6.

引用本文的文献

1
Deep learning-based automated diagnosis of temporomandibular joint anterior disc displacement and its clinical application.
Front Physiol. 2024 Dec 13;15:1445258. doi: 10.3389/fphys.2024.1445258. eCollection 2024.
2
H2G-Net: A multi-resolution refinement approach for segmentation of breast cancer region in gigapixel histopathological images.
Front Med (Lausanne). 2022 Sep 14;9:971873. doi: 10.3389/fmed.2022.971873. eCollection 2022.
4
Estimating Reference Shape Model for Personalized Surgical Reconstruction of Craniomaxillofacial Defects.
IEEE Trans Biomed Eng. 2021 Feb;68(2):362-373. doi: 10.1109/TBME.2020.2990586. Epub 2021 Jan 20.
6
One-Shot Generative Adversarial Learning for MRI Segmentation of Craniomaxillofacial Bony Structures.
IEEE Trans Med Imaging. 2020 Mar;39(3):787-796. doi: 10.1109/TMI.2019.2935409. Epub 2019 Aug 14.
7
Craniomaxillofacial Bony Structures Segmentation from MRI with Deep-Supervision Adversarial Learning.
Med Image Comput Comput Assist Interv. 2018 Sep;11073:720-727. doi: 10.1007/978-3-030-00937-3_82. Epub 2018 Sep 13.
8
Deep learning in medical imaging and radiation therapy.
Med Phys. 2019 Jan;46(1):e1-e36. doi: 10.1002/mp.13264. Epub 2018 Nov 20.

本文引用的文献

1
FULLY CONVOLUTIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION.
Proc IEEE Int Symp Biomed Imaging. 2016;2016:1342-1345. doi: 10.1109/ISBI.2016.7493515.
2
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
3
LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images.
Neuroimage. 2015 Mar;108:160-72. doi: 10.1016/j.neuroimage.2014.12.042. Epub 2014 Dec 22.
4
AUTOMATIC MULTI-ATLAS-BASED CARTILAGE SEGMENTATION FROM KNEE MR IMAGES.
Proc IEEE Int Symp Biomed Imaging. 2012 Dec 31;2012:1028-1031. doi: 10.1109/ISBI.2012.6235733.
5
Craniomaxillofacial trauma: synopsis of 14,654 cases with 35,129 injuries in 15 years.
Craniomaxillofac Trauma Reconstr. 2012 Mar;5(1):41-50. doi: 10.1055/s-0031-1293520.
6
Auto-context and its application to high-level vision tasks and 3D brain image segmentation.
IEEE Trans Pattern Anal Mach Intell. 2010 Oct;32(10):1744-57. doi: 10.1109/TPAMI.2009.186.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验