Suppr超能文献

使用3D全卷积网络从MRI数据估计CT图像。

Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.

作者信息

Nie Dong, Cao Xiaohuan, Gao Yaozong, Wang Li, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.

Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, USA.

出版信息

Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.

Abstract

Computed tomography (CT) is critical for various clinical applications, e.g., radiotherapy treatment planning and also PET attenuation correction. However, CT exposes radiation during CT imaging, which may cause side effects to patients. Compared to CT, magnetic resonance imaging (MRI) is much safer and does not involve any radiation. Therefore, recently researchers are greatly motivated to estimate CT image from its corresponding MR image of the same subject for the case of radiotherapy planning. In this paper, we propose a 3D deep learning based method to address this challenging problem. Specifically, a 3D fully convolutional neural network (FCN) is adopted to learn an end-to-end nonlinear mapping from MR image to CT image. Compared to the conventional convolutional neural network (CNN), FCN generates structured output and can better preserve the neighborhood information in the predicted CT image. We have validated our method in a real pelvic CT/MRI dataset. Experimental results show that our method is accurate and robust for predicting CT image from MRI image, and also outperforms three state-of-the-art methods under comparison. In addition, the parameters, such as network depth and activation function, are extensively studied to give an insight for deep learning based regression tasks in our application.

摘要

计算机断层扫描(CT)在各种临床应用中至关重要,例如放射治疗计划以及正电子发射断层扫描(PET)衰减校正。然而,CT成像过程中会产生辐射,这可能会给患者带来副作用。与CT相比,磁共振成像(MRI)要安全得多,且不涉及任何辐射。因此,最近在放射治疗计划的情况下,研究人员受到极大激励,试图从同一受试者的相应MR图像估计CT图像。在本文中,我们提出了一种基于3D深度学习的方法来解决这一具有挑战性的问题。具体而言,采用3D全卷积神经网络(FCN)来学习从MR图像到CT图像的端到端非线性映射。与传统卷积神经网络(CNN)相比,FCN生成结构化输出,并且能够在预测的CT图像中更好地保留邻域信息。我们已在真实的盆腔CT/MRI数据集中验证了我们的方法。实验结果表明,我们的方法在从MRI图像预测CT图像方面准确且稳健,并且在比较中也优于三种最先进的方法。此外,我们还对网络深度和激活函数等参数进行了广泛研究,以便为我们应用中基于深度学习的回归任务提供见解。

相似文献

1
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.使用3D全卷积网络从MRI数据估计CT图像。
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.
2
Medical Image Synthesis with Context-Aware Generative Adversarial Networks.基于上下文感知生成对抗网络的医学图像合成
Med Image Comput Comput Assist Interv. 2017 Sep;10435:417-425. doi: 10.1007/978-3-319-66179-7_48. Epub 2017 Sep 4.
5
Medical Image Synthesis with Deep Convolutional Adversarial Networks.基于深度卷积对抗网络的医学图像合成。
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.
10
An application of cascaded 3D fully convolutional networks for medical image segmentation.级联三维全卷积网络在医学图像分割中的应用。
Comput Med Imaging Graph. 2018 Jun;66:90-99. doi: 10.1016/j.compmedimag.2018.03.001. Epub 2018 Mar 16.

引用本文的文献

2
An Efficient Dual-Sampling Approach for Chest CT Diagnosis.一种用于胸部CT诊断的高效双采样方法。
J Multidiscip Healthc. 2025 Jan 17;18:239-253. doi: 10.2147/JMDH.S472170. eCollection 2025.
3
CT synthesis with deep learning for MR-only radiotherapy planning: a review.基于深度学习的CT合成用于仅磁共振放疗计划:综述
Biomed Eng Lett. 2024 Sep 26;14(6):1259-1278. doi: 10.1007/s13534-024-00430-y. eCollection 2024 Nov.

本文引用的文献

3
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
5
3D convolutional neural networks for human action recognition.三维卷积神经网络的人体动作识别。
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):221-31. doi: 10.1109/TPAMI.2012.59.
8
Diffeomorphic demons: efficient non-parametric image registration.微分同胚恶魔算法:高效的非参数图像配准
Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验