IEEE Trans Med Imaging. 2020 Mar;39(3):787-796. doi: 10.1109/TMI.2019.2935409. Epub 2019 Aug 14.
Compared to computed tomography (CT), magnetic resonance imaging (MRI) delineation of craniomaxillofacial (CMF) bony structures can avoid harmful radiation exposure. However, bony boundaries are blurry in MRI, and structural information needs to be borrowed from CT during the training. This is challenging since paired MRI-CT data are typically scarce. In this paper, we propose to make full use of unpaired data, which are typically abundant, along with a single paired MRI-CT data to construct a one-shot generative adversarial model for automated MRI segmentation of CMF bony structures. Our model consists of a cross-modality image synthesis sub-network, which learns the mapping between CT and MRI, and an MRI segmentation sub-network. These two sub-networks are trained jointly in an end-to-end manner. Moreover, in the training phase, a neighbor-based anchoring method is proposed to reduce the ambiguity problem inherent in cross-modality synthesis, and a feature-matching-based semantic consistency constraint is proposed to encourage segmentation-oriented MRI synthesis. Experimental results demonstrate the superiority of our method both qualitatively and quantitatively in comparison with the state-of-the-art MRI segmentation methods.
与计算机断层扫描 (CT) 相比,磁共振成像 (MRI) 可以避免有害的辐射暴露,从而描绘颅面 (CMF) 骨骼结构。然而,MRI 中的骨骼边界较为模糊,在训练过程中需要从 CT 中借用结构信息。这是一个挑战,因为配对的 MRI-CT 数据通常很少。在本文中,我们提出充分利用通常很丰富的未配对数据,以及单对 MRI-CT 数据,构建一个用于 CMF 骨骼结构自动 MRI 分割的单次生成对抗模型。我们的模型由一个跨模态图像合成子网络和一个 MRI 分割子网络组成。这两个子网络以端到端的方式联合训练。此外,在训练阶段,提出了一种基于邻域的锚定方法来减少跨模态合成中固有的模糊问题,并提出了一种基于特征匹配的语义一致性约束来鼓励面向分割的 MRI 合成。实验结果表明,与最先进的 MRI 分割方法相比,我们的方法在定性和定量方面都具有优越性。
IEEE Trans Med Imaging. 2020-3
Med Image Comput Comput Assist Interv. 2018-9
Comput Med Imaging Graph. 2024-10
J Neurosci Methods. 2025-3
IEEE Trans Med Imaging. 2022-11
Med Image Anal. 2021-8
Diagnostics (Basel). 2021-6-12
IEEE Trans Med Imaging. 2021-10
IEEE Trans Med Imaging. 2021-4
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018-9
IEEE Trans Pattern Anal Mach Intell. 2020-4
Med Image Comput Comput Assist Interv. 2018-9
IEEE Trans Med Imaging. 2018-10-17
Proc SPIE Int Soc Opt Eng. 2018-3
Neuroinformatics. 2018-10
Mach Learn Med Imaging. 2017