文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于单次生成对抗网络的颅颌面骨结构 MRI 分割

One-Shot Generative Adversarial Learning for MRI Segmentation of Craniomaxillofacial Bony Structures.

出版信息

IEEE Trans Med Imaging. 2020 Mar;39(3):787-796. doi: 10.1109/TMI.2019.2935409. Epub 2019 Aug 14.


DOI:10.1109/TMI.2019.2935409
PMID:31425025
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7219540/
Abstract

Compared to computed tomography (CT), magnetic resonance imaging (MRI) delineation of craniomaxillofacial (CMF) bony structures can avoid harmful radiation exposure. However, bony boundaries are blurry in MRI, and structural information needs to be borrowed from CT during the training. This is challenging since paired MRI-CT data are typically scarce. In this paper, we propose to make full use of unpaired data, which are typically abundant, along with a single paired MRI-CT data to construct a one-shot generative adversarial model for automated MRI segmentation of CMF bony structures. Our model consists of a cross-modality image synthesis sub-network, which learns the mapping between CT and MRI, and an MRI segmentation sub-network. These two sub-networks are trained jointly in an end-to-end manner. Moreover, in the training phase, a neighbor-based anchoring method is proposed to reduce the ambiguity problem inherent in cross-modality synthesis, and a feature-matching-based semantic consistency constraint is proposed to encourage segmentation-oriented MRI synthesis. Experimental results demonstrate the superiority of our method both qualitatively and quantitatively in comparison with the state-of-the-art MRI segmentation methods.

摘要

与计算机断层扫描 (CT) 相比,磁共振成像 (MRI) 可以避免有害的辐射暴露,从而描绘颅面 (CMF) 骨骼结构。然而,MRI 中的骨骼边界较为模糊,在训练过程中需要从 CT 中借用结构信息。这是一个挑战,因为配对的 MRI-CT 数据通常很少。在本文中,我们提出充分利用通常很丰富的未配对数据,以及单对 MRI-CT 数据,构建一个用于 CMF 骨骼结构自动 MRI 分割的单次生成对抗模型。我们的模型由一个跨模态图像合成子网络和一个 MRI 分割子网络组成。这两个子网络以端到端的方式联合训练。此外,在训练阶段,提出了一种基于邻域的锚定方法来减少跨模态合成中固有的模糊问题,并提出了一种基于特征匹配的语义一致性约束来鼓励面向分割的 MRI 合成。实验结果表明,与最先进的 MRI 分割方法相比,我们的方法在定性和定量方面都具有优越性。

相似文献

[1]
One-Shot Generative Adversarial Learning for MRI Segmentation of Craniomaxillofacial Bony Structures.

IEEE Trans Med Imaging. 2020-3

[2]
LMISA: A lightweight multi-modality image segmentation network via domain adaptation using gradient magnitude and shape constraint.

Med Image Anal. 2022-10

[3]
Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.

Med Phys. 2019-5-6

[4]
Craniomaxillofacial Bony Structures Segmentation from MRI with Deep-Supervision Adversarial Learning.

Med Image Comput Comput Assist Interv. 2018-9

[5]
Towards cross-modal organ translation and segmentation: A cycle- and shape-consistent generative adversarial network.

Med Image Anal. 2018-12-19

[6]
CycleSGAN: A cycle-consistent and semantics-preserving generative adversarial network for unpaired MR-to-CT image synthesis.

Comput Med Imaging Graph. 2024-10

[7]
Diverse data augmentation for learning image segmentation with cross-modality annotations.

Med Image Anal. 2021-7

[8]
A bidirectional multilayer contrastive adaptation network with anatomical structure preservation for unpaired cross-modality medical image segmentation.

Comput Biol Med. 2022-10

[9]
Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.

Magn Reson Med. 2020-7

[10]
Attentional adversarial training for few-shot medical image segmentation without annotations.

PLoS One. 2024

引用本文的文献

[1]
Convolutional Neural Networks for the segmentation of hippocampal structures in postmortem MRI scans.

J Neurosci Methods. 2025-3

[2]
Three contrasts in 3 min: Rapid, high-resolution, and bone-selective UTE MRI for craniofacial imaging with automated deep-learning skull segmentation.

Magn Reson Med. 2025-1

[3]
Attentional adversarial training for few-shot medical image segmentation without annotations.

PLoS One. 2024

[4]
Adversarial-based latent space alignment network for left atrial appendage segmentation in transesophageal echocardiography images.

Front Cardiovasc Med. 2023-3-2

[5]
Dual Adversarial Attention Mechanism for Unsupervised Domain Adaptive Medical Image Segmentation.

IEEE Trans Med Imaging. 2022-11

[6]
Deep learning kidney segmentation with very limited training data using a cascaded convolution neural network.

PLoS One. 2022

[7]
ABCnet: Adversarial bias correction network for infant brain MR images.

Med Image Anal. 2021-8

[8]
Enhance Portable Radiograph for Fast and High Accurate COVID-19 Monitoring.

Diagnostics (Basel). 2021-6-12

[9]
Generalized Zero-Shot Chest X-Ray Diagnosis Through Trait-Guided Multi-View Semantic Embedding With Self-Training.

IEEE Trans Med Imaging. 2021-10

[10]
Multi-Domain Image Completion for Random Missing Input Data.

IEEE Trans Med Imaging. 2021-4

本文引用的文献

[1]
Unpaired Deep Cross-Modality Synthesis with Fast Training.

Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018-9

[2]
Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI.

IEEE Trans Pattern Anal Mach Intell. 2020-4

[3]
Craniomaxillofacial Bony Structures Segmentation from MRI with Deep-Supervision Adversarial Learning.

Med Image Comput Comput Assist Interv. 2018-9

[4]
SynSeg-Net: Synthetic Segmentation Without Target Modality Ground Truth.

IEEE Trans Med Imaging. 2018-10-17

[5]
Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study.

Lancet. 2018-10-11

[6]
Splenomegaly Segmentation using Global Convolutional Kernels and Conditional Generative Adversarial Networks.

Proc SPIE Int Soc Opt Eng. 2018-3

[7]
SegAN: Adversarial Network with Multi-scale L Loss for Medical Image Segmentation.

Neuroinformatics. 2018-10

[8]
Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images.

Med Image Anal. 2018-2-27

[9]
Segmentation of Craniomaxillofacial Bony Structures from MRI with a 3D Deep-Learning Based Cascade Framework.

Mach Learn Med Imaging. 2017

[10]
Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals.

Comput Biol Med. 2017-9-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索