Bjørndal Bodil, Alterås Eva Katrine, Lindquist Carine, Svardal Asbjørn, Skorve Jon, Berge Rolf K
1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.
2Department of Heart Disease, Haukeland University Hospital, N-5021 Bergen, Norway.
Nutr Metab (Lond). 2018 Jan 29;15:10. doi: 10.1186/s12986-018-0241-7. eCollection 2018.
The 4-thia fatty acid tetradecylthiopropionic acid (TTP) is known to inhibit mitochondrial β-oxidation, and can be used as chemically induced hepatic steatosis-model in rodents, while 3-thia fatty acid tetradecylthioacetic acid (TTA) stimulates fatty acid oxidation through activation of peroxisome proliferator activated receptor alpha (PPARα). We wished to determine how these two compounds affected in vivo respiration and mitochondrial efficiency, with an additional goal to elucidate whether mitochondrial function is reflected in plasma acylcarnitine levels.
C57BL/6 mice were divided in 4 groups of 10 mice and fed a control low-fat diet, low-fat diets with 0.4% (/w) TTP, 0.4% TTA or a combination of these two fatty acids for three weeks ( = 10). At sacrifice, β-oxidation and oxidative phosphorylation (OXPHOS) capacity was analysed in fresh liver samples. Hepatic mitochondria were studied using transmission electron microscopy. Lipid classes were measured in plasma, heart and liver, acylcarnitines were measured in plasma, and gene expression was measured in liver.
The TTP diet resulted in hepatic lipid accumulation, plasma L-carnitine and acetylcarnitine depletion and elevated palmitoylcarnitine and non-esterified fatty acid levels. No significant lipid accumulation was observed in heart. The TTA supplement resulted in enhanced hepatic β-oxidation, accompanied by an increased level of acetylcarnitine and palmitoylcarnitine in plasma. Analysis of mitochondrial respiration showed that TTP reduced oxidative phosphorylation, while TTA increased the maximum respiratory capacity of the electron transport system. Combined treatment with TTP and TTA resulted in a profound stimulation of genes involved in the PPAR-response and L-carnitine metabolism, and partly prevented triacylglycerol accumulation in the liver concomitant with increased peroxisomal β-oxidation and depletion of plasma acetylcarnitines. Despite an increased number of mitochondria in the liver of TTA + TTP fed mice, the OXPHOS capacity was significantly reduced.
This study indicates that fatty acid β-oxidation directly affects mitochondrial respiratory capacity in liver. As plasma acylcarnitines reflected the reduced mitochondrial β-oxidation in TTP-fed mice, they could be useful tools to monitor mitochondrial function. As mitochondrial dysfunction is a major determinant of metabolic disease, this supports their use as plasma markers of cardiovascular risk in humans. Results however indicate that high PPAR activation obscures the interpretation of plasma acylcarnitine levels.
4-硫代脂肪酸十四烷基硫代丙酸(TTP)已知可抑制线粒体β-氧化,并可用作啮齿动物化学诱导的肝脂肪变性模型,而3-硫代脂肪酸十四烷基硫代乙酸(TTA)通过激活过氧化物酶体增殖物激活受体α(PPARα)刺激脂肪酸氧化。我们希望确定这两种化合物如何影响体内呼吸和线粒体效率,另一个目标是阐明线粒体功能是否反映在血浆酰基肉碱水平上。
将C57BL/6小鼠分成4组,每组10只,分别喂食对照低脂饮食、含0.4%(/w)TTP的低脂饮食、含0.4%TTA的低脂饮食或这两种脂肪酸的组合,持续三周(n = 10)。处死时,分析新鲜肝脏样本中的β-氧化和氧化磷酸化(OXPHOS)能力。使用透射电子显微镜研究肝脏线粒体。测量血浆、心脏和肝脏中的脂质类别,测量血浆中的酰基肉碱,并测量肝脏中的基因表达。
TTP饮食导致肝脏脂质蓄积、血浆L-肉碱和乙酰肉碱耗竭以及棕榈酰肉碱和非酯化脂肪酸水平升高。在心脏中未观察到明显的脂质蓄积。补充TTA导致肝脏β-氧化增强,同时血浆中乙酰肉碱和棕榈酰肉碱水平升高。线粒体呼吸分析表明,TTP降低了氧化磷酸化,而TTA增加了电子传递系统的最大呼吸能力。TTP和TTA联合处理导致参与PPAR反应和L-肉碱代谢的基因受到显著刺激,并部分防止了肝脏中三酰甘油的蓄积,同时过氧化物酶体β-氧化增加和血浆乙酰肉碱耗竭。尽管喂食TTA + TTP的小鼠肝脏中线粒体数量增加,但OXPHOS能力显著降低。
本研究表明脂肪酸β-氧化直接影响肝脏中的线粒体呼吸能力。由于血浆酰基肉碱反映了喂食TTP的小鼠中线粒体β-氧化的降低,它们可能是监测线粒体功能的有用工具。由于线粒体功能障碍是代谢疾病的主要决定因素,这支持它们作为人类心血管风险的血浆标志物的用途。然而,结果表明高PPAR激活会掩盖血浆酰基肉碱水平的解释。