Suppr超能文献

图架构在控制系统动力学网络中的作用及其在神经系统中的应用

Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems.

作者信息

Kim Jason Z, Soffer Jonathan M, Kahn Ari E, Vettel Jean M, Pasqualetti Fabio, Bassett Danielle S

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104.

Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104 and U.S. Army Research Laboratory, Aberdeen, MD 21001.

出版信息

Nat Phys. 2018;14:91-98. doi: 10.1038/nphys4268. Epub 2017 Sep 25.

Abstract

Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

摘要

网络系统展示了组件之间复杂的相互作用模式。在物理网络中,这些相互作用通常沿着结构连接发生,这些结构连接在硬连线连接拓扑中链接组件,支持各种全系统范围的动态行为,如同步。虽然对这些行为的描述很重要,但它们只是理解和利用网络拓扑与系统行为之间关系的第一步。在这里,我们使用线性网络控制理论来推导精确的闭式表达式,这些表达式将结构连接的一个子集(那些将驱动节点连接到非驱动节点的连接)的连通性与控制网络系统所需的最小能量联系起来。为了说明数学方法的实用性,我们将这种方法应用于最近从果蝇、小鼠和人类大脑重建的高分辨率连接组。我们利用这些原理来揭示人类大脑在以小能量成本支持多样化网络动态同时对扰动保持稳健性方面的优势,并通过去除网络中的单个边来对大脑的控制性能进行临床上可及的靶向操纵。一般来说,我们的结果将控制系统行为的期望建立在其网络架构之上,并通过分布式控制直接激发网络分析和设计的新方向。

相似文献

7
The global dynamical complexity of the human brain network.人类大脑网络的全局动态复杂性。
Appl Netw Sci. 2016;1(1):16. doi: 10.1007/s41109-016-0018-8. Epub 2016 Dec 30.

引用本文的文献

2
Development of the brain network control theory and its implications.脑网络控制理论的发展及其影响。
Psychoradiology. 2024 Dec 14;4:kkae028. doi: 10.1093/psyrad/kkae028. eCollection 2024.
4
Controllability in attention deficit hyperactivity disorder brains.注意缺陷多动障碍大脑中的可控性。
Cogn Neurodyn. 2024 Aug;18(4):2003-2013. doi: 10.1007/s11571-023-10063-z. Epub 2024 Feb 6.
7
The mechanics of correlated variability in segregated cortical excitatory subnetworks.分离子皮质兴奋性亚网络中相关变异性的力学特性。
Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2306800121. doi: 10.1073/pnas.2306800121. Epub 2024 Jul 3.

本文引用的文献

2
Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity.神经工程学的新兴前沿:脑连接的网络科学
Annu Rev Biomed Eng. 2017 Jun 21;19:327-352. doi: 10.1146/annurev-bioeng-071516-044511. Epub 2017 Mar 27.
3
Network neuroscience.网络神经科学
Nat Neurosci. 2017 Feb 23;20(3):353-364. doi: 10.1038/nn.4502.
4
Optimal trajectories of brain state transitions.脑状态转换的最优轨迹。
Neuroimage. 2017 Mar 1;148:305-317. doi: 10.1016/j.neuroimage.2017.01.003. Epub 2017 Jan 11.
6
Topological and geometric measurements of force-chain structure.力链结构的拓扑和几何测量。
Phys Rev E. 2016 Sep;94(3-1):032909. doi: 10.1103/PhysRevE.94.032909. Epub 2016 Sep 28.
7
Small-World Brain Networks Revisited.再次探讨小世界脑网络。
Neuroscientist. 2017 Oct;23(5):499-516. doi: 10.1177/1073858416667720. Epub 2016 Sep 21.
9
Stimulation-Based Control of Dynamic Brain Networks.基于刺激的动态脑网络控制
PLoS Comput Biol. 2016 Sep 9;12(9):e1005076. doi: 10.1371/journal.pcbi.1005076. eCollection 2016 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验