Suppr超能文献

揭示金属卤化物钙钛矿形成的连续沉积详细路径。

Revealing the detailed path of sequential deposition for metal halide perovskite formation.

作者信息

Ummadisingu Amita, Grätzel Michael

机构信息

Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland.

出版信息

Sci Adv. 2018 Feb 2;4(2):e1701402. doi: 10.1126/sciadv.1701402. eCollection 2018 Feb.

Abstract

Sequential deposition has been extensively used for the fabrication of perovskite solar cells. Nevertheless, fundamental aspects of the kinetics of methylammonium lead iodide perovskite formation remain obscure. We scrutinize the individual stages of the reaction and investigate the crystallization of the lead iodide film, which occurs before the intercalation of methylammonium iodide commences. Our study identifies the presence of mixed crystalline aggregates composed of perovskite and lead iodide during intercalation and structural reorganization. Furthermore, Ostwald ripening occurs in the film for reaction times beyond the point of conversion to perovskite. Using cross-sectional confocal laser scanning microscopy for the first time, we reveal that lead iodide in the over-layer and at the bottom of the mesoporous layer converts first. We identify unreacted lead iodide trapped in the mesoporous layer for samples of complete conversion. We acquire kinetic data by varying different parameters and find that the Avrami models best represent them. The model facilitates the rapid estimation of the reaction time for complete conversion for a variety of reaction conditions, thereby ascertaining a major factor previously determined by extensive experimentation. This comprehensive picture of the sequential deposition is essential for control over the perovskite film quality, which determines solar cell efficiency. Our results provide key insights to realize high-quality perovskite films for optoelectronic applications.

摘要

顺序沉积已被广泛用于制备钙钛矿太阳能电池。然而,甲基碘化铅钙钛矿形成动力学的基本方面仍不清楚。我们仔细研究了反应的各个阶段,并研究了碘化铅薄膜的结晶过程,该过程在甲基碘化铵插入开始之前就已发生。我们的研究确定了在插入和结构重组过程中存在由钙钛矿和碘化铅组成的混合晶体聚集体。此外,对于超过转化为钙钛矿点的反应时间,薄膜中会发生奥斯特瓦尔德熟化。我们首次使用横截面共聚焦激光扫描显微镜发现,覆盖层和介孔层底部的碘化铅首先发生转化。对于完全转化的样品,我们确定了被困在介孔层中的未反应碘化铅。我们通过改变不同参数获取动力学数据,发现阿夫拉米模型最能代表这些数据。该模型有助于快速估计各种反应条件下完全转化的反应时间,从而确定了一个以前通过大量实验确定的主要因素。这种对顺序沉积的全面描述对于控制钙钛矿薄膜质量至关重要,而钙钛矿薄膜质量决定了太阳能电池的效率。我们的结果为实现用于光电子应用的高质量钙钛矿薄膜提供了关键见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef66/5804582/57ab6255ffc4/1701402-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验