State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Angew Chem Int Ed Engl. 2018 Apr 3;57(15):4010-4014. doi: 10.1002/anie.201800706. Epub 2018 Feb 28.
Noble metal nanoparticles are promising catalysts in electrochemical reactions, while understanding the relationship between the structure and reactivity of the particles is important to achieve higher efficiency of electrocatalysis, and promote the development of single-molecule electrochemistry. Electrogenerated chemiluminescence (ECL) was employed to image the catalytic oxidation of luminophore at single Au, Pt, and Au-Pt Janus nanoparticles. Compared to the monometal nanoparticles, the Janus particle structure exhibited enhanced ECL intensity and stability, indicating better catalytic efficiency. On the basis of the experimental results and digital simulation, it was concluded that a concentration difference arose at the asymmetric bimetallic interface according to different heterogeneous electron-transfer rate constants at Au and Pt. The fluid slip around the Janus particle enhanced local redox reactions and protected the particle surface from passivation.
贵金属纳米粒子在电化学反应中是很有前途的催化剂,而了解粒子的结构和反应性之间的关系对于实现更高的电催化效率和促进单分子电化学的发展非常重要。电致化学发光(ECL)被用来对单 Au、Pt 和 Au-Pt 手性纳米粒子上的发光体的催化氧化进行成像。与单金属纳米粒子相比,手性粒子结构表现出增强的 ECL 强度和稳定性,表明具有更好的催化效率。根据实验结果和数字模拟,得出结论:根据 Au 和 Pt 之间不同的非均相电子转移速率常数,在不对称双金属界面处出现浓度差。Janus 粒子周围的流体滑移增强了局部氧化还原反应,并防止了粒子表面的钝化。