Esquirol Lygie, Peat Thomas S, Wilding Matthew, Lucent Del, French Nigel G, Hartley Carol J, Newman Janet, Scott Colin
CSIRO Biocatalysis and Synthetic Biology, Canberra, Australian Capital Territory, Australia.
Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia.
PLoS One. 2018 Feb 9;13(2):e0192736. doi: 10.1371/journal.pone.0192736. eCollection 2018.
Biuret deamination is an essential step in cyanuric acid mineralization. In the well-studied atrazine degrading bacterium Pseudomonas sp. strain ADP, the amidase AtzE catalyzes this step. However, Rhizobium leguminosarum bv. viciae 3841 uses an unrelated cysteine hydrolase, BiuH, instead. Herein, structures of BiuH, BiuH with bound inhibitor and variants of BiuH are reported. The substrate is bound in the active site by a hydrogen bonding network that imparts high substrate specificity. The structure of the inactive Cys175Ser BiuH variant with substrate bound in the active site revealed that an active site cysteine (Cys175), aspartic acid (Asp36) and lysine (Lys142) form a catalytic triad, which is consistent with biochemical studies of BiuH variants. Finally, molecular dynamics simulations highlighted the presence of three channels from the active site to the enzyme surface: a persistent tunnel gated by residues Val218 and Gln215 forming a potential substrate channel and two smaller channels formed by Val28 and a mobile loop (including residues Phe41, Tyr47 and Met51) that may serve as channels for co-product (ammonia) or co-substrate (water).
双缩脲脱氨作用是氰尿酸矿化过程中的关键步骤。在研究充分的降解莠去津的细菌假单胞菌属ADP菌株中,酰胺酶AtzE催化这一步骤。然而,豌豆根瘤菌蚕豆生物型3841却使用一种与之无关的半胱氨酸水解酶BiuH来替代。本文报道了BiuH、结合有抑制剂的BiuH以及BiuH变体的结构。底物通过一个氢键网络结合在活性位点,该网络赋予了高底物特异性。活性位点结合有底物的无活性Cys175Ser BiuH变体的结构表明,一个活性位点半胱氨酸(Cys175)、天冬氨酸(Asp36)和赖氨酸(Lys142)形成了一个催化三联体,这与对BiuH变体的生化研究结果一致。最后,分子动力学模拟突出显示了从活性位点到酶表面存在三条通道:一条由残基Val218和Gln215构成门控的持久通道,形成一个潜在的底物通道;以及两条由Val28和一个移动环(包括残基Phe41、Tyr47和Met51)形成的较小通道,它们可能作为副产物(氨)或共底物(水)的通道。