Suppr超能文献

氰尿酸生物降解通过缩二脲:生理学、分类学和地理空间分布。

Cyanuric Acid Biodegradation via Biuret: Physiology, Taxonomy, and Geospatial Distribution.

机构信息

BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA.

Department of Biochemistry, Hamline University, St. Paul, Minnesota, USA.

出版信息

Appl Environ Microbiol. 2020 Jan 7;86(2). doi: 10.1128/AEM.01964-19.

Abstract

Cyanuric acid is an industrial chemical produced during the biodegradation of -triazine pesticides. The biodegradation of cyanuric acid has been elucidated using a single model system, sp. strain ADP, in which cyanuric acid hydrolase (AtzD) opens the -triazine ring and AtzEG deaminates the ring-opened product. A significant question remains as to whether the metabolic pathway found in sp. ADP is the exception or the rule in bacterial genomes globally. Here, we show that most bacteria utilize a different pathway, metabolizing cyanuric acid via biuret. The new pathway was determined by reconstituting the pathway with purified enzymes and by mining more than 250,000 genomes and metagenomes. We isolated soil bacteria that grow on cyanuric acid as a sole nitrogen source and showed that the genome from a strain had a canonical cyanuric acid hydrolase gene but different flanking genes. The flanking gene encoded an enzyme that we show catalyzed the decarboxylation of the cyanuric acid hydrolase product, carboxybiuret. The reaction generated biuret, a pathway intermediate further transformed by biuret hydrolase (BiuH). The prevalence of the newly defined pathway was determined by cooccurrence analysis of cyanuric acid hydrolase genes and flanking genes. Here, we show the biuret pathway was more than 1 order of magnitude more prevalent than the original sp. ADP pathway. Mining a database of over 40,000 bacterial isolates with precise geospatial metadata showed that bacteria with concurrent cyanuric acid and biuret hydrolase genes were distributed throughout the United States. Cyanuric acid is produced naturally as a contaminant in urea fertilizer, and it is used as a chlorine stabilizer in swimming pools. Cyanuric acid-degrading bacteria are used commercially in removing cyanuric acid from pool water when it exceeds desired levels. The total volume of cyanuric acid produced annually exceeds 200 million kilograms, most of which enters the natural environment. In this context, it is important to have a global understanding of cyanuric acid biodegradation by microbial communities in natural and engineered systems. Current knowledge of cyanuric acid metabolism largely derives from studies on the enzymes from a single model organism, sp. ADP. In this study, we obtained and studied new microbes and discovered a previously unknown cyanuric acid degradation pathway. The new pathway identified here was found to be much more prevalent than the pathway previously established for sp. ADP. In addition, the types of environment, taxonomic prevalences, and geospatial distributions of the different cyanuric acid degradation pathways are described here.

摘要

三聚氰胺酸是一种工业化学品,在三嗪类农药的生物降解过程中产生。三聚氰胺酸的生物降解已经通过单个模型系统得到了阐明,即 sp. 菌株 ADP,其中三聚氰胺酸水解酶(AtzD)打开三嗪环,AtzEG 脱氨基化环开产物。一个重要的问题仍然是,ADP 菌株中发现的代谢途径是细菌基因组中普遍存在的例外还是规则。在这里,我们表明,大多数细菌利用不同的途径,通过缩二脲代谢三聚氰胺酸。新途径是通过用纯化的酶重新构建途径以及挖掘超过 250,000 个基因组和宏基因组来确定的。我们分离出以三聚氰胺酸为唯一氮源生长的土壤细菌,并表明来自 菌株的基因组具有典型的三聚氰胺酸水解酶基因,但侧翼基因不同。侧翼基因编码一种我们证明催化三聚氰胺酸水解酶产物脱羧的酶,即羧基缩二脲。反应生成缩二脲,该途径中间体进一步由缩二脲水解酶(BiuH)转化。通过三聚氰胺酸水解酶基因和侧翼基因的共现分析确定了新定义途径的普遍性。在这里,我们表明,与原始的 sp. ADP 途径相比,新定义的途径的流行度超过 1 个数量级。对具有精确地理位置元数据的超过 40,000 个细菌分离株的数据库进行挖掘表明,同时具有三聚氰胺酸和缩二脲水解酶基因的细菌分布在美国各地。三聚氰胺酸自然产生作为尿素肥料的污染物,并且在游泳池中用作氯稳定剂。当游泳池水中的三聚氰胺酸含量超过所需水平时,商业上使用三聚氰胺酸降解细菌从池水中去除三聚氰胺酸。每年生产的三聚氰胺酸总量超过 2000 万吨,其中大部分进入自然环境。在这种情况下,了解微生物群落在自然和工程系统中对三聚氰胺酸的生物降解具有重要的全球意义。目前对三聚氰胺酸代谢的了解主要来自于对单个模式生物 sp. ADP 酶的研究。在这项研究中,我们获得并研究了新的微生物,并发现了一种以前未知的三聚氰胺酸降解途径。这里确定的新途径比以前为 sp. ADP 建立的途径更为普遍。此外,还描述了这里不同三聚氰胺酸降解途径的环境类型、分类流行率和地理空间分布。

相似文献

1
Cyanuric Acid Biodegradation via Biuret: Physiology, Taxonomy, and Geospatial Distribution.
Appl Environ Microbiol. 2020 Jan 7;86(2). doi: 10.1128/AEM.01964-19.
2
Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily.
Environ Microbiol. 2018 Jun;20(6):2099-2111. doi: 10.1111/1462-2920.14094. Epub 2018 Mar 26.
3
Ring cleavage and degradative pathway of cyanuric acid in bacteria.
Biochem J. 1985 Oct 1;231(1):25-30. doi: 10.1042/bj2310025.
5
Purification and characterization of TrzF: biuret hydrolysis by allophanate hydrolase supports growth.
Appl Environ Microbiol. 2006 Apr;72(4):2491-5. doi: 10.1128/AEM.72.4.2491-2495.2006.
6
Gene sequence and properties of an s-triazine ring-cleavage enzyme from Pseudomonas sp. strain NRRLB-12227.
Appl Environ Microbiol. 1999 Aug;65(8):3512-7. doi: 10.1128/AEM.65.8.3512-3517.1999.
8
An unexpected vestigial protein complex reveals the evolutionary origins of an -triazine catabolic enzyme.
J Biol Chem. 2018 May 18;293(20):7880-7891. doi: 10.1074/jbc.RA118.001996. Epub 2018 Mar 9.
9
Defining sequence space and reaction products within the cyanuric acid hydrolase (AtzD)/barbiturase protein family.
J Bacteriol. 2012 Sep;194(17):4579-88. doi: 10.1128/JB.00791-12. Epub 2012 Jun 22.
10
Bacterial Cyanuric Acid Hydrolase for Water Treatment.
Appl Environ Microbiol. 2015 Oct;81(19):6660-8. doi: 10.1128/AEM.02175-15. Epub 2015 Jul 17.

引用本文的文献

1
Cyanuric acid in Paramecium secretions is an efficient quorum sensing inducer.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf080.
2
Dating Ammonia-Oxidizing Bacteria with Abundant Eukaryotic Fossils.
Mol Biol Evol. 2024 May 3;41(5). doi: 10.1093/molbev/msae096.
3
-induced Changes in Guava Root Exudates Are Associated With Root Rotting Caused by .
J Nematol. 2023 Dec 31;55(1):20230055. doi: 10.2478/jofnem-2023-0055. eCollection 2023 Feb.
4
Wastewater bacteria remediating the pharmaceutical metformin: Genomes, plasmids and products.
Front Bioeng Biotechnol. 2022 Dec 16;10:1086261. doi: 10.3389/fbioe.2022.1086261. eCollection 2022.
5
Urinary Excretion of Cyanuric Acid in Association with Urolithiasis: A Matched Case-Control Study in Shanghai Adults.
Int J Environ Res Public Health. 2022 Jul 18;19(14):8726. doi: 10.3390/ijerph19148726.
7
Methodological Advances to Study Contaminant Biotransformation: New Prospects for Understanding and Reducing Environmental Persistence?
ACS ES T Water. 2021 Jul 9;1(7):1541-1554. doi: 10.1021/acsestwater.1c00025. Epub 2021 Jun 24.
8
Overexpression of exogenous in rice plants confers tolerance to biuret toxicity.
Plant Direct. 2020 Nov 29;4(11):e00290. doi: 10.1002/pld3.290. eCollection 2020 Nov.
9
Discovery of an ultraspecific triuret hydrolase (TrtA) establishes the triuret biodegradation pathway.
J Biol Chem. 2021 Jan-Jun;296:100055. doi: 10.1074/jbc.RA120.015631. Epub 2020 Dec 1.

本文引用的文献

3
The Pfam protein families database in 2019.
Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432. doi: 10.1093/nar/gky995.
4
A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life.
Nat Biotechnol. 2018 Nov;36(10):996-1004. doi: 10.1038/nbt.4229. Epub 2018 Aug 27.
5
Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily.
Environ Microbiol. 2018 Jun;20(6):2099-2111. doi: 10.1111/1462-2920.14094. Epub 2018 Mar 26.
6
An unexpected vestigial protein complex reveals the evolutionary origins of an -triazine catabolic enzyme.
J Biol Chem. 2018 May 18;293(20):7880-7891. doi: 10.1074/jbc.RA118.001996. Epub 2018 Mar 9.
8
Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life.
Nat Microbiol. 2017 Nov;2(11):1533-1542. doi: 10.1038/s41564-017-0012-7. Epub 2017 Sep 11.
9
Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel.
Sci Rep. 2017 Mar 27;7:45277. doi: 10.1038/srep45277.
10
A new genome-mining tool redefines the lasso peptide biosynthetic landscape.
Nat Chem Biol. 2017 May;13(5):470-478. doi: 10.1038/nchembio.2319. Epub 2017 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验